
bicmo

Products that help you make a better iob of it.

 corrosive. rosiniflux for electical and g.
soldding.
Rosin R.F.10. 35 g net. 69 p per pack. aluminiuml and stainless steel. Nonelectetrical.
Arax A.F.14. 5 S. 69 p per pack.

All recommended retail prices shown are inclusive of VAT. If you have difficulty in obtaining any of these products send direct with 40p for postage and packing. For free colour brochure send S.A.E.
wW-022. For further details

Metal Soldering.
AraxMulticore 4 -aci-core solder for metal fabrication (not aluminium) and repairs.
$40 / 60$ tin//ead.1.6mm dia. Size $11 . \mathrm{E} .91$ per reel.

alls

DATA PRECISION
 digital instruments...

wireless world

ELECTRONICS/TELEVISION/RADIO/AUDIO

DECEMBER, 1980 . Vol 86 No 1539
Front cover is a Paul Brierler
photograph of the tape system in a fripips an ane op ope system
mentation recorder.

IN OUR NEXT ISSUE Microprocessor, trainer.
Designed to familiarize the complete beginner wit microprocessors, this
small unit with hex key
board board and six-digit display
has enough facilities to has enough facilities to
make a useful tool later on. Off-air frequency reference provides a 10 MHz signal phase locked to the
200 kHz Droitwich trans mission. Modification allow for the eventual
change of Droitwich to change
198kHz.
Multiplex keying system for organs gives flexible
control of pipe or
or electron
tad. m.

Current issue price 60 p . back issue (if
avaiibolal f1.00 at Retail and Trade Counter, Paris Garden, London SE1. Aviliabie on microfilm: please contact
By post, current issue 96 , back issues
(if available) $£ 1.50$, order and payments to Room Cr34, Dorset

 . -35 Save our public service broadcasting
\(\left.\begin{array}{cc}\hline 35 Save our public service broadcasting

\hline 1 \& 36 Programmable power supply

by J. Summers\end{array}\right]\)| 41 World of amateur radio |
| :---: |
| 42 Intermodulation at the amplifier-loudspeaker interface - 2 |
| by Matti Otala and Norma Lammasniemi |

-

...off the shelf

MULTIFUNCTION TIMER-COUNTER

Data Precision 5740

Frequency 5 Hz to 100 MHz Pulse 0 to $10^{\prime} \mathrm{pps}$
Single period 1 to 200,000 F
Period average $9,999.999$ to $999,999.9$
Talking (event counting)

Sensitivity 10 mV

Accuracy field adjustable to 0.1 ppm

Stability | | $\pm 0.01 \mathrm{ppm} / \mathrm{sec}$ |
| :--- | :--- |
| | $\pm 0.6 \mathrm{ppm} / \mathrm{month}$ |

$\pm 0.6 \mathrm{ppm} / \mathrm{mont}$

Mains powered

UK price 195 delivered ex VAT

FARNELL INTERNATIONAL INSTRUMENTS LIMITED • WETHERBY - WEST YORKSHIRE LS22 4DH • TELEPHONE 093761961 • TELEX 557294 FARIST G REGIONAL OFFICE SOUTH: HARPENDEN TELEPHONE 0582769072

Formore details circle the appropriate numbers on the enquiry card

Featured here is just one of Data Precision's wide range of conomically priced digital instruments. We believe they offer more value and versatility than any other range you can buy from. hey are the world's leading source That why wo ck hat's why we stock them. That's why we offer full service and recalibration acis using USA trained technicians. That's why you should products. Use this magazine's reply system now to obtain detailed brochures and prices.

Sole UK Agent:

(0) Parnell
 House, Stamford Street, London SE1 Telephones: Editorial 01-261 8620. Ad-
versing $01-261$
8339.
 London SEPS. G . Cables Etheworld,
Lond en SE1. Sunberciption rates: 1 year $£ 10.00$ UK
and $\$ 33.80$ outside UK. Student rates: 1 year 55.00 UK and
s 16.90 outside UK Distribution: 40 Bowling Green Lane,
London $E C 1 R$ ONE. Telephone $01-837$
Subscriptions: Oakfield House, Perry
 Please notify a change of address.

© IPC Business Press Ltd, 1980
ISS 00436062

$93531 / 2$ digit hand hold DMM

002
$93831 / 2$ digit hand hold capacitance meter940 Hand hold thermometer$\begin{array}{r}003 \\ 004 \\ \hline\end{array}$

1350 31/2 digit low cost bench DMM

005
175 As 1020 A
1750 3
$175031 / 2$ digit bench DMM 4/2 digit portable DMM 4/2 digit portable DMM 400 41/2 digit bench DM $350051 / 2$ digit lab/systems DMM $75005 \frac{1}{2}$ digit systems DMM 3505 Single range DVMs . 3505 Single range DVMS
8100 Dual output dc volts standard 585 direr 5808 dim 58008 digit bench frequency meter 520 MHz 57407 digit multifunction timer-counter............... Short form catalogue code BISPRS G

The world overYou get the best service from Haltron

For high quality electronic valves, circuits - and the speediest service specify Haltron. It's the first choice o Governments and many other users quality and reliability are clearly confirmed. The product range is very very wide. And Haltron export expertise will surely meet your requirements, Wherever you are, get
the best service. From Haltron.

Tests bipolar transistors, diodes and zener diodes. Measures
leakage down to 0.5 nA at 2 V to 150 V . Current gains are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakd. Current gains are 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for $1 \mathrm{C} / 1_{\mathrm{B}}$ ratios of $10,20,30$. The instrument is

TRANSISTOR RANG
TRANSISTOR RANGES (PNP OR NPN)
$I_{C B O}$ \&I $I_{E B O}: 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s.d. acc. $\pm 2 \% \mathrm{fts.c}, \pm 1 \%$ at V oltages of $2 \mathrm{~V}, 5 \mathrm{~V}$,
$10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 10 \mathrm{~V}$, 120 V , and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to
$\mathrm{BV}_{\mathrm{Cbo}}$: 10 V . fall at $100 \mathrm{O}<5 \%+250 \mathrm{mV}$
I_{B} : currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$.
f.s.d. $\pm 1 \%$ at fixed $i_{\text {E }}$ of $1 \mu \mathrm{~mA}$ f.s.d. acc. $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$,
$1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$

3 inverse scales of 2000 to 100,400 to 30 and
ive convert I_{B} into $h_{F E}$ readings.
$V_{C E(\text { sat })}$:
1 V f.s.d. acc. $\pm 20 \mathrm{mV}$ measured at conditions
On h_{FE} test
$1 \mathrm{Vf.s.d}$. acc. $\pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $1 / I_{\mathrm{B}}$.

DIODE \& ZENER DIODE RANGES
As $I_{E B O}$ transistor ranges.
V_{C}. Breakdown ranges as BV CBO for transistors.
1V...s.d. acc. 20 mV at DF of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$. $100 \mu \mathrm{~m}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA .
${ }_{\text {TMpe }}^{\text {TMp }}$ \& 160

DON'T GAMBLE

WITH PERFORMANCE BUY

LEVELL TESTERS

A logarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed stabilised test voltage. The cuirrent available is limited to a
maximum value of 3 mA for safety and capacitors are automatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a
RESISTANCE RANGES
M Ω to $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV . $\mathrm{M} \Omega$ to $-1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}, 50 \mathrm{~V}$ and 100 V .

Accuracy $\pm 15 \%+800 \Omega$ on 6 decade logarithmic scale. Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mV}$ at scale centre. Fall of test voltages $<2 \%$ at $10 \mu A$ and $<20 \%$ at $100 \mu \mathrm{~A}$. Short circuit current between $500 \mu \mathrm{~A}$ and 3 mA . CURRENT RANGE
100 pA to $100 \mu A$ on 6 decade logarithmic scale
Accuracy of current measurement $\pm 15 \%$ of indicated value. nput voltage drop is approximately 20 mV at $100 \mathrm{pA}, 200 \mathrm{mV}$ 100 nA and 400 mV at $100 \mu \mathrm{~A}$

MEASUREMENT TIME
<3s for resistance on all ranges relative to CAL wosition. <3s for resistance on all ranges relative to CAL position.
<10s for resistance of $10 \mathrm{G} \Omega$ across $1 \mu \mathrm{~F}$ on 50 V to 500 V . Discharge time to 1% is 0.1 s per μ F on CAL position. RECORDER OUTPUT
decade $\pm 2 \%$ with zero output at scale centre ${ }_{\substack{\text { Type } \\ \text { TM14 }}}^{\text {E } 170}$

Optional extras are leather cases and mains power units. Prices are ex works, V.A.T. extra in U.K.

If everything were perfect...

...a control unit would consist of an on/off switch, a volume control and a programme selector switch.

In practice, correctly designed tone controls can make a significant contribution.

For a constant sound level, replay from a gramophone record produces distortion which increases very rapidly at high frequencies-doubling in fact for every major third increase in pitch.

There comes a point when the contribution of this distortion is increasing at a greater rate than the musical content and this is what decides the optimum setting of tine comprehensive Quad filter system, an essential and integral part of every Quad pre-amplifier.

The rate of attenuation can be set anywhere between 0 and 25 dB per octave starting at one of three frequencies $5 \mathrm{k}, 7 \mathrm{k}$, or 10 kHz and an appropriate setting can be found for each record to provide more of the music and less of the distortion.

To learn all about the Quad 44 write or telephone for a leaflet.

The Acoustical Manufacturing Co.Ltd., Huntingdon PE18 7DB. Telephone: (0480) 52561.

QUAD

for the closest approach to the original sound
QUAD is a registered trade mark.

Get 24 DMMs off the shelf.

Turn to page 3 of your ITT Instrument Services catalogue for a list of top names and Norma. Compare performance and specification then phone or telex Harlow or any local ITT office and we'll deliver off the shelf.

The ITT Instrument Services
catalogue is your key to fast delivery and technical back-up for a vast range o quality instruments. Get it off the shelf.

IIIT instrument services
the only way to buy.

ww-on for furturb petans

\section*{जिएD
 WIRELESS WORLD DECEMBER 1980

WIRELESS WORLD DECEMBER 1980

Bigger stock investment greater equipment range means wider choice

	${ }_{\substack{\text { Prices } \\ \text { trome }}}$			-72 MHz AM FM Deviation Meter
wer	so			1) 10.470 MHz AM
ArCoNi		BS33144 channel 1 mV -10V	525	ital Synchroniser
. $5 \mathrm{~V} 4 \mathrm{4A} \mathrm{~A}^{10.30 \mathrm{~V}} 1 \mathrm{~A}, 0 \pm 15 \mathrm{~V} 2$	60		1650	
SMITHS				$0^{0.15-1-10 / 0 / 8}$
47015 5-7V O/P Power Pas	32		545	
ORESEN	375	$\begin{aligned} & \text { HEWVLETT PACKARD } \\ & \text { 690M. } 5 \text { inch. Stripchart Single } \\ & 5 \mathrm{mV}-120 \mathrm{~V} 1 / P 20 \mathrm{~cm} / \mathrm{min} 2.5 \mathrm{~cm} \end{aligned}$		
Ise Generators			${ }_{995}^{275}$	
DB ELECTRONICS		LSI		ROHDE \& SCHWARZ
RESEARCH			1215	SCHAFFNER
	220	NAGRA		Mans m
Sns 10 Hz 50 MHz 10V/508	15	PHILIPS		
${ }^{1221 .} 5$ Timing Unin 6 Channel			450	de: 5800 V
	${ }_{100}^{50}$	RACAL		Soteot
	175	$\xrightarrow{\text { Store } 4.4 . \mathrm{Uses}}$		
HEWLETT PACKARD		spee		Simulator (Maintrame)
	${ }^{50}$			${ }_{74216}{ }^{\text {STC }}$ Noise Generator 20 Hz 4
ARCONI		(${ }^{\text {a }}$		
7ns	350	600825 Channol $\mu \mathrm{V} 8$ in	450	9900.10 .300 MHz S Sweep genera
576 3 V/ 508.11				TV Markers set ot 5
corders and Signal	275	SMITHS INDUSTRIES		
quipm		${ }^{\text {FSO }}$ S. $3.60 \mathrm{~cm} / \mathrm{min}$ and hour		Spectrum Analysers
AMPEX		Yokogal		Gene
10 16 chammens. FM/RP.		P. 2 Com/minin and hr	350	-
eeds. ${ }^{1 / 1 / 2 a p e ~ F M}$		3046	425	
300 kHz DR	6500	Signal Sources an		
BRUNO WOELKE				cr 180 Maintrame 100
MEE1028. Wow and dutur meter	${ }_{90}^{75}$	$10284.35250 \mathrm{MHz} \mathrm{ln} /$ Ext FM/AM		
RUEL \& KJAER			1725	Soncos
				range Di.spertison: 100 Hz 2.6 kHz
	150		525	o various 500 series
	${ }_{79} 5$,	${ }^{95}$	${ }_{\text {CRO's }}^{\text {CRKTRONIX }}$
		LETT PACKARD		5. Plug in unititis into various
$\begin{aligned} & \text { dB Potentiometer } \\ & \text { dB Potentiometer } \end{aligned}$	${ }_{69}^{59}$	$2040.5 \mathrm{~Hz}-1.2$ O P 5 V RMS		500 B series CRO's. $50 \mathrm{~Hz}-1 \mathrm{MHz}$.

All PRICES LISTED ARE EXCLUSIVE OF VAT (Standard Rate)

Sweep Generators
HEWLTTT PACKAR

 connectiors
TEXSCAN
990 Sweep G

T.V. Test Equipment
PHILPS
PM5508E
 Voltmeters-Analogue

 OFFS
OEW LETT PACKARD
HOOE Millivotmeter

ESD.ACIRCTOHMS
SOLARTRON

Voltmeters Vector/Phase
${ }_{3}$ DRANETZ

PLEASE NOTE:
LISTED HERE IS ONLY A SELECTION OF OUR WIDE STOCK OF EQUIPMENT-
FOR SPECIALIST NEEDS OR

the EUrO-SOUrCe The alternative source that's near to hand

 KGM. A video production line with high volume capability, here in Europe. Ready to meet your orders for open frame monitor chassis that neatly replace those long-range imporyou're using currently. Same mounting, same international -
standard connections. But one big, competitive advantage... We're so much nearer, with the stocks, fast production highly competitive too, especially on big could only expect from a home based source. KGM prices are

The specifications you want... bright, clear CRT data display, with superior resolution. The quaty Latest miniaturised pcb construction of course, in an open chassis that allows screen tilt and mounting variations to fit your package
So if you buy video display this way . . . call KGM now. See how keen we are to win your next order.
KGM ELECTRONICS LIMITED
KGM ELECK Road, Isleworth, Mi Telephone: 01-568 0151. Telex: 934120

The finest amplification kits from Crimson Eletrrik

* \star * \star BEST VALUE $\star \star \star \star$

C- Crimson Elektrik
(AASAMFORD STREET, IEICESTER LE1 Bur

WW - 051 FOR FURTHER DETAIL

The PM 2517 has set the standard and the pace in Europe for hand-held digital multimeter and still it remains in a class of its own.
Remember, its many important features include full four digits, so on mains voltage readings, for xample, you might get 240.3 digit meter would read. Some other PM $\mathbf{2 5 1 7}$ plus points LED or LCD display
-True RMS readings of AC voltage and current -Autoranging with manual override
Optional accessories include temperature and data hold probes
The PM 3207 - Super Scope-is a tough, general purpose oscilloscope which offers at a low price the quality and technology you expect from Philips Test and Measuring from Philips T
. Instruments.

Reader inquiry number 220

- 5 MHz dual trace
- Auto triggering from either channel with adjustable level between peaks and TV triggering -5 mV sensitivity, Y and X (via A input) ${ }^{-1}$ invert facility - B invert facility

PATTERN FOR THE FUTURE

Built-in 5 digit counter

- $50 \mathrm{~m} V$ R output at 7.58 can be attenuated to
- Electronically stabilised output level.

Reader inquiry number 223 PM 6307 WOW AND FLUTTER METER PM x-tal controw AND FLU oscillator - High cancuracky and requency stability

- 3150 Hz or 3000 Hz switchable

PM 2517 multimeter
PM 3207 ouctilloscope

(1) Pye Unicam Ltd

PHILIPS

Amicron INDUSTRIAL MUSCLE

\star POWER RESPONSE DC $-20 \mathrm{KHz} \pm 1 \mathrm{~dB}$.
\star POWER RESPONSE DC $-20 \mathrm{KHz} \pm 1 \mathrm{~dB}$.
\star OUTPUTT POWER IN EXCESS OF 1.5 kW into 2.75 Ohm LOAD (CONTINUOUS R.M.S.).
\star D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2 KVa .
\star HARMONIC DISTORTION LESS THAN 0.05% DC-20KHz AT 1 kW INTO 6 OHMS
\star PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS \star UNIPOLAR AND
BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS.
\star OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD.
\star FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD
\star INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS.
\star 3-YEAR PARTS AND LABOUR WARRANTY.
For full details on all Amcron Products write or phone Chris Flack

The Experimentor System ${ }^{\text {™ }}$-a quicker transition from imagination

Wher you have a circuit idea that you want to make happen, we have a system to make it happen quicker and easier than ever before: The Experimentor System.
You already know how big a help our Experimentor solderless breadboards can be. Now we've taken our good idea two steps further
We've added Experimentor Scratchboard workpads, with our breadboard hole-and-connection pattern printed in light blue ink. To let you sketch up a layout you already have working so you can a layout you already
reproduce it later.

With Experimentor Matchboard you can go from breadboard to the finished product nonstop! We've matched our breadboard pattern again, this time on a printed circuit board, finished and ready to build on. All for about $£ 1.32$.
There's even a letter-and-number index for each hole, so you can move from breadboard (where printed) to Matchboardтм (where they're silkscreened onto the component side) and always know where you are. When you want to save time and energy, you can't beat The Experimentor System.

CHOOSE FROM FOUR MODELS
$\star 31 / 2$ digit autoranging (volts/OHms)
$\star 200$ hours battery life (2 pencells)
$\star 10 \mathrm{amp}$ AC/DC ($6220 \& 6110$) $\star 1000 \mathrm{v}$ DC
600 V AC $\mathrm{mA} \mathrm{AC/DC}(6200 \& 6100)$

* 200 mA AC/DC ($6200 \& 6100$)
* Range hold facility $(6100 \& 6110)$ Unit and range sign (6110 \& 6220)
Continuity buzzer (6100 \& 6110)

wW - 039 FOR FURTHER DETALLS

TelequipmenT S61
SINGLE TRACE LCHTWEICHT 5 MHz OSCILLOSCOPE
 to manufacturer's
full specification full specification

This offer cannot be repeated.
 so DAV This offer cannot be repeated. Available only whilst stocks last

BANDWIDTH DC to $5 \mathrm{MHz} /-3 \mathrm{~dB}$
DELECTION $5 \mathrm{mV} /$ div to $20 \mathrm{~V} / \mathrm{div}$ DEFLECTION $5 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$
SWEEP SPEEDS $500 \mathrm{~ms} / \mathrm{div}$ to $1 \mu \mathrm{~s} / \mathrm{div}$ SWEEP SPEEDS TRIGGERING Variable control or Auto SOURCE Internal, External or Line C.R.T. $5^{\prime \prime}$ tube 8×10 divisions leach division DIMENSIONS 280 mm

$$
\begin{aligned}
& 280 \mathrm{~mm} \text { Hign, } 160 \mathrm{~mm} \text { Wide, } \\
& 370 \mathrm{~mm} \text { Deep, Weight } 6.0 \mathrm{~kg}
\end{aligned}
$$

For complete spec. of the TelequipmenT S61, or to order direct - complete and post coupon today. Personal callers welcome. Only 5 mins from Camden Town underground. Come and see
our complete range of 'Blue Chip' Used Test \& Measuring Equipment.
How to order
$\left\lvert\, \begin{aligned} & \text { Fill in coupon and return } \\ & \text { with y your cheaue made }\end{aligned}\right.$

$\left\lvert\, \begin{aligned} & \text { daporopiate. } \\ & \text { days for dive } \\ & \text { your door. }\end{aligned}\right.$

 Shirley House, 27 Camden Road.
London NW1 9 NR Telephone 01-267 5311
 dispatch +VAT on total).
Please charge my ready-credit card. Barclay/Access,
account No Please send me furterer information on the S61/and details
of vour complete range of 'second user equipment
\square Signature
ame Mr/Mrs/Miss
CAPITALSS PLEASE
Address for delivery

- 032 FOR FURTHER DETAIIS - $12 / \mathrm{WW}$

Introducing the latest professional state-of-the-art $31 / 2$-digit DMM - at really oldfashioned prices! From just an unbelievable $£ 39.95$ inc. VAT, plus $£ 1.15$ p\&p!

WIRELESS WORLD DECEMBER 1980
AND THERE'S MORE WHERE THIS CAME FROM

 List t so send now for a
UNEAR ICS: NumEnIC LISTINGS
为

2010 Marth Fervice Raid, Brentwand, Esser:

TELEPHONE (STD 0277) 230909 TELEX 995194 AMBIT G POSTCODE CM144SG

Britain's The Sinclair zxso
 £79.25
 Price breakdown ZX80 and manual: £69.52 VAT: £10.43 Post and packing FREE

 Please note: many kit makers quote VAT-exclusive prices You've seen the reviews.... you've heard the excite.ment.. now make the kitt! This is the ZXen. 'Personal Computer World' gave
Tt 5 stars for 'excellent value.' enchmark tests
ment.... It 5 stars for ' 'xcellent value.' Benchmark test-
say it's faster than all previous personal com--
puters And the puters. And the response from kit enthusiasts
has been tremendous. has been tremendous.
To help you appreciate its value, the price is
shown above with and without VAT.' This is so shown above with and without VATT. TTisisis so
you can compare the $\bar{Z} \times 80$ with competitive you can compare the $̇$ Z $X 80$ with competitive
kits that don't appear with inclusive prices.
'Excellent value' indeed! Forjust $£ 79.95$ (including VAA and $\mathrm{p} \& \mathrm{p}$) you
get everything you need to build a a ersonal
 all ICs; case; leads for direct connection to a
cassette recorder and television (black and white or colour); everything!
Yet the $\mathrm{ZX80}$ ereally is a complete, powerful,
full-facility computer, matching or surpassing full-facility computer, matching or surpassing
other personal computers at several times the price.
The ZXBO is programmed in BASIC, and you
can use it to do quite literally anything trom can
playing chess to managing a business. The ZX80 is pleasantly straightitorward to
assemble, using a fine-tip oped soldering in assemble using a fine-tipped soldering iron.
It immediately proves what a good job you've done; connect it to your TV . .link it to an
appropriate appropriate
ready to go.
Your 2×80 kit contains.

- Printed circuit board, with IC sockets for
all ICs.
.
. - Comp. ICs-all manufactured by selected world
- New rugged Sinclair keyboard, touch-

Sensitive, wipe-clean

- Ready-moulded case
- Leads and plugs for connection to
domestic TV and cassette recorder. domestic TV and cassette recorder.
(Programs can be SAVEd and LOADed on to a portable cassette recorder.)
FREE course in BASIC programming and user manual.
Optional extras
Optional extras
- Mains adator of 600 mA at 9 VDC nominal unregulated (avalial
separately-see coupon).
- Additional memory expansion boards allowing up to 16 K bytes RAM. (Extra
RAM chips also available-see coupon)
*Use a 600 mA at 9 VDC nominal unregulated mains
adapot. Available from Sinclarif f desired (see coupon).

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days decial scales can be made to order

Full Information from:

HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD, W.C. $1 \quad \begin{array}{r}\text { Phone: } 01-8377937 \\ \text { Telex: } 892301\end{array}$ ww - 036 FOR FURTHER DETAILS

WIRELESS WORLD DECEMBER 1980

wW - 052 FOR FURTHER DETALLS
\qquad
OMB ELECTRONISS, RIVERSIDE, EYNSFFRD, KENT DA4 OAE
-
Prices, which are CWO and ex-VaT, are correct at the tine
to press and are suliject to change without notice.
FROM OMB ELECTRONICS
WW - 097 FOR FURTHER DETAILS WW - 097 FOR FURTHER DETAILS

Immediate delivery of easy to fit Display Bezels

S-2020TA STEREO

TUNER / AMPLIFIER

 KITNEW HIGH PERFORMANCE TUNER A high-quality push-button FM Varicap Stereo Tuner with pilot cancel decoder combined
with a 24W r.m.s. per channel Stereo
Amplifier, using Bifet op. amps.
NELSON-JONES
Supplied complete with lens and all fixings Compatible display mounting boards
This
This
unique design
unique desi
attractively
frames a
frames a
display
display
and requires
only a single

cut-out
for fixing.
Vero bezels
manufactured in four sizes
to accommodate 2,4 or 6
digits. A choice of three
digits. A choice of three
types of lens are offered
Neutral Red and
suitral, Red and clear to
AND LCDS LCD mounting b bid
AND LCD mounting boards
are available in seven
versions compatible with
versions comp.
VERO Bezels.

TELEVISION SOUND IS GOOD!

Yes it's true - but you'll need to listen through a Minim
Television Sound Tuner to be convinced. Music, wild ife Television Sound Tuner to be convinced. Cusic, widdife, the detail that you expect from High. Fidelity equipment.
Connect the Minim Television Sound Tuner to the amplifier Connect the Minim Television Sound Tuner to the amplifier
or music centre or listen directly on headphones so as not to or music centre
disturb others:
Further information will only cost you 12 p - stamp ou poor televison sound!
Name
Address

Minim Audio Limited, Lent Rise Road, Burnham
Slough SL1 7 NY. Tel: Burnham 63724
MINIM AUDIO
make a note of our name!

NRDC-AMBISONIC

UHJ
SURROUND SOUND DECODER

S5050A STEREO AMP ${ }^{\text {Verf high }}$ performance kii

Tone cancel switch. 2 tape monitor
heasins.
Complete k kitonly
$\mathbf{6 9 . 9 5}$

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval

 etc.
Complete kit $£ \mathbf{~} \mathbf{5 2 . 5 0}$ plus VAT, or ready built and tested $\mathbf{£ 6 8 . 5 0}$ plus VAT.

Wireless World Dolby noise reducer
 Trademark of Dotby Laboratories int

Complete Kit PRICE: $\mathbf{£ 4 9 . 9 5}$

$\begin{array}{l}\text { Dynamic range }>90 \text { d } \\ 30 m v \text { sensitivity }\end{array}$

Also vavalable ready buit and tested

Please send SAE for complete lists äd spécifications Portwood Industrial Estate, Church Gresley,
Burton-on-Trent, Staffs DE11 9PT Burton-on-Trent (0283) 215432 Telex 377106

New KONTAKT Sprays

	for the Electronics \& Electrical Industries
Jntak	KALTRON 601
thers	A new cleaner for Magnetic Recording Units. Kaltron 601 as an extremely low surface tension thereby enabling the cleaning of magnetic sound heads leaving no deposit or
an ${ }^{\text {8 }}$	Other tracess is chemically pure (99,8\%) - non conductive -
\pm	non-lammable. ${ }_{\text {It }}$ can be used on energised electrical intalations and
601	electronic equipment, e.g. video units, tape recorders, data processing systems etc.
	Also New

PRINTER 66

Splay cleaner for type wheel printers, matrix printers and chain printers. Can
als be cesed for cleaning normal lypewriters
SCREEN 99
Specially for the cleaning of all types of screens, including data terminals and
T.V. Screens.
VASELINE SPRAY 701
FASEL in communicarions engineering and construction of antennae.
rroved succeasful as corrosion inhibitior tor coable clamps, connecting screw.

Special Products Distributors Ltd. 81 Piccadilly, London, W1Y OHL

Tel: 01-629 9556: Cables: Speciprod, London, w. 1.
Telex: 265200 (answerback RACEN)
WW - 091 FOR FURTHER DETAILS
 ammeters, motammeters, frequency meters (dellectional (induding resonant reed), (including resonant reed), maximum demand meters and metal relays. Ancillary product include current transformers, shunts, transducers and tachogenerators. plus the introduction of new edgewise meter styles. And or which explains why OEMs and other meter users the Oervice they require Our Sales Engineers are always available to advise on the suitability of an instrument for your application instrument for your application prices with significant quantity
liscounts. Many products ar available rapidly from our extensive stocks. Special items receive the urgent attention of our prototype service.
Meters, as we say, means
Anders, and the proof is the -
Anders Electronics catalogue Send for your personal copy right away.

FAST ERECTING CIAR WASTS

For World-wide Telecommunications in the 1980's Clark Masts Ltd are specialists in the design and manufacture of telescopic and sectional mast systems. With over 25 years' experience in supplying masts to meet exacting military and civi specifications we have the expertise you can
depend on.
Extended heights $4 \mathrm{~m}-30$ metres capable of lifting headload $1 \mathrm{Kg}-200 \mathrm{Kgs}$, sectional or telescopic telephone us for details today.

CLARK MASTS LTD
Binstead,
Isle of Wigh
PO 33 3PA, England.
Telephone Ryde (0983) 63691,

Digitel
Video Noise Measurement System The Digitol D4060 Noise Measurement System offers an accurate
and oconomical methoo of measuring video signal to noise ratio on and occonomical method of measuring video signal to noise ratio on
broadcast or industrial TV systems.

$£ 580$ + vat

- Measures signal to $\pm 1.5 \mathrm{dBs}$ from 20 dBs to 60 d
- Measures signal to noise ratio down to 65 dés SNR
- Field interval SNR measurements are possible with the
- SNR measurement is possible in the presence of sync pulses, some
- Visual display on oscilloscope ensures measurement confiden
- Full CCIR weighting filter sets are available

DIGI-TEL ELECTRONICS
ww - 079 FOR FURTHER DETAILS

Fक 12

L.E.D.s. 125 and .2

RED YELLOW or GREEN 1 N4148 Diodes
$1+.08$
$100+.069$
$1000+.058$

RESISTORS E12 SERIES
T.I. LOW PROFILE I.C. SOCKETS

40 pin $24 \quad .215 \quad .19$ We also stock transistors, diodes, TTL, CMOS, capacitors
switches, connectors etc. Free catalog

Farrison Bros. Electronic Distributors
22 Milton Road, Westcliff-on-Soa
Essex
SSO $7 J X$ England Tel. Southend-on-Sea (0702) 32338

Helping Business to Communicate

We took yesterday's teleprinter and replaced mechanics with microprocessor electronics. We have given you a keyboard like an electric typewriter, a noise level even less and higher operating speeds.
The traditional paper tape has been replaced with an electronic memory which gives you an easy way of editing text, changing or inserting words or paragraphs so that accurate messages can be sent to line.
We provide full operator training and a nationwide technical support and service.

- Microprocessor reliability.
- Compatible with older teleprinters.
- Standard paper and ink-ribbons.
- Speeds up to 30 characters per second
- Nationwide sales and service.
- For telex or private circuit use.
- British made.

(3) (2)
 NEW EQUIPMENT FROM KEITHLEY S

CARRIAGE \& VAT EXTRA ON ALL ITEMS

\section*{| ter Timer |
| :---: |
| ter |
| ter Timer |
| Timer |}

 SSCIILOSCOPES

Signal sources
1 A Puse Generator 0.1 Hz -20MHz $\mathrm{O} / \mathrm{P} 1$ 16V 50 O

 Miscellaneous

- for any computer or logic system
- convert digital output to SPEECH

ELECTRONIC POWER UNITS FOR XENON ARC AND MERCURY ARC LAMPS Lamp housings and lens systems manufactured as standard off the shelf models or to
specific design.

 putr rees up his or her eyes
Vocabularies and prices: * \star UNLIMITED SPEECH COMING SOON

 bits and bytes", machine-code programming and hardware control

MODUS SVSTEMS LTD.
29A EASTCHEAP, LETCHWWRTH SG6 3D
PHONE (04626) 74468/76392
WW - 048 FOR FURTHER DETALLS

Gets you into China

5erum
 China

Gets sales leads out

Guaranteed Distribution Tradelink has a guaranteed
circulation of 11,000 copies in China. It is published jointly by IPC Business Press (London). Girardet (Essen), and the China International Trade, Peking of CCPIT is responsible for translation and distribution. The magazine is printed by the
Beijing Company.
The Right Market Each issue of Tradelink is a
special issue - the copies go only to potential customers in the field covered.
Reader Reply Cards Tradelink has a reader reply card se

The Industrial Equipment issue of Tradelink has already prompted more than 150 enquiries from Chinese end-
users. Every company with a users. Every company with a
full page or half page entry in the magazine has received at least one enquiry, and some as many as 10 .
We do it for you
To make it as easy as possible for you, we write the copy. translate it, and then lay out your page. You simply approve the page or tell us how to do

ADVANCED TECHNOLOGY AND PRODUCTS FOR CHINA

ORDER FORM

To: Tradelink
IPC Industrial Press Limited Quadres The Quadrant, Sutton, Surrey SM2 5AS
Telephone: 01 -661 3500 Telex: 892084 BISPRS
Please send me further information about Tradelink

Name (piease print)

Company
Address

Telephone
Telex

New Profile Amplifiers- Two New Series

Model	Output Power PMS	Distor- tion Typical at 1 KHz	Slow Rate	Riso Time	Signal/Noise Ratio DN AUDIO	 VAT
MOS120	$60 W$	0.005%	$20 \mathrm{~V} / \mu \mathrm{s}$	$3 \mu \mathrm{~s}$	100 dB	$£ 25.88$ into 48Ω
MOS200	120 s into 48Ω	0.005%	$20 \mathrm{~V} / \mu \mathrm{s}$	$3 \mu \mathrm{~s}$	100 dB	E 33.46 $+£ 5.02$

BIPOLAR

 , $\begin{aligned} & \text { where power and price are first tonsideration while } \\ & \text { maintainingoptimumperformance with hi-fi quality }\end{aligned}$ Profile extrusions with hheir computer-verified thermal efficiency and improved mounting shourders
Connectionsare simple, via five pinsonthe underside and withournewest pre-amps and powersupply
units, it becomes easier than ever to have a system layout housed units, it becomes easier than ever to have a system layout housed the way you want it.

Model	Output PMS RMS	Distor- tion Typical at 1 KHz	Slew Rato	Rise Time	$\begin{aligned} & \text { Signal//Noise } \\ & \text { Ratio } \\ & \text { DIN AUDIO } \end{aligned}$	Price ${ }^{8}$ VAT
нY30	$\begin{aligned} & 15 \mathrm{~W} \text { into } \\ & 4-8 \Omega \end{aligned}$	0.015\%	15V/4s	5 us	100dB	$\begin{array}{r} \text { £6.34 } \\ +95 p \end{array}$
HY60	$\begin{aligned} & 30 \mathrm{~W} \text { into } \\ & 4-8 \Omega \end{aligned}$	0.015\%	15V/43	$5{ }^{4} \mathrm{~s}$	100dB	$\begin{aligned} & £ 7.24 \\ & +£ 1.09 \\ & \hline \end{aligned}$
HY120	$\begin{aligned} & 60 \mathrm{~W} \text { into } \\ & 4-8 \Omega \end{aligned}$	0.01\%	15V/43	$5{ }^{4}$	100dB	$\begin{aligned} & £ 15.20 \\ & +£ .2 .28 \end{aligned}$
HY200	$\begin{aligned} & 120 \mathrm{~W} \text { into } \\ & 48 \Omega \end{aligned}$	0.01\%	15V/us	$5{ }^{4}$	100dB	$\begin{gathered} £ 18.44 \\ +£ 2.77 \\ \hline \end{gathered}$
HY400	$\begin{aligned} & 240 \mathrm{~W} \text { into } \\ & 4 \Omega \end{aligned}$	0.01\%	15V/4s	$5 \mu \mathrm{~s}$	100dB	$\begin{aligned} & £ 27.68 \\ & +£ 4.15 \\ & \hline \end{aligned}$

The range grows

 bigger...better...

NO QUIBBLE 5 YEAR GUARANTEE 7. DAY DESPATCH ON ALL ORDERS BRITISH DESIGN AND MANUFACTURE freepost service

fact:
 this condenser microphone sets a new standard of technical excellence.

wireless world

Save our public service broadcasting

Edito

Editor:
TOM IVALL, M.I.E.R.E.

Deputy Editor:
PHULP DARRINGTO

Technical Editor:

Proiects Editor
mike sagin

Communications Editor

News Editor:

Drawing Office Manage
eatine

Chnical Illustrator
BETTY PALMER
Production \& Design:
ALAN Kfor
ALAN KERR
Advertisement Controlle
G. BENTON ROWELL

Advertisement Manager
BOB NIBBS
david disley
Classified Manager:
BRIAN DURRANT
anthony hadley
(Classified Advertisements
JOHN GIBBON (Make-up and copy)
Publishing Director:
GORDON HENDERSON

Programmable power supply

Digital control via the IEEE-488 General Purpose Interface Bus by J. Summers, B.Sc., M.Sc., M.Inst. P.

The General Purpose Interface Bus, defined by IEEE Std 488 (1978) and IEC
$652-1$, provides a facility whereby electronic instruments can
communicate using a standard for the hardware circuits and recommended practice for the data and software
protocol. This article describes an interface for a programmable power supply which can be used as a

The heart of the GPIB interface contains a 96LS488 low-power Schottky 1.s.i. device,
see Fig. 1, which is dedicated to interpret ing the bus commands and messages outlined in Fig. 2. The remaining logic decodes ASCII digits from the bus and stores the b.c.d. numbers which are
converted to a binary format conserted to a binary format and then
passed to a d-to-a converter as shown in Fig. 3. The d-to-a output is amplified and current-boosted to provide the appropriate power supply output. Additional features include thumbwheel-switched program-
ming for manual operation, an overload detection circuit which signals the fault to the bus controller, and a remote reset facil-

ity which allows the controller to set the power supply voltage to zero and clear any
overload condition by a single command message. In this design the power supply operates in the listener/talker mode with single-byte addressing. During the Listener Active State (LACS) the interface
automatically receives data automatically receives data transmitted
over the GPIB by a talker and, in particular, recognizes and stores two ASCIIcoded decimal digits. The message is terminated by an ASCII carriage return which, if the power supply manual con-
trols are disabled by the controller, passes the received digits to the d-to-a converter.

At switch on, the interface is in the offline initialized state, the data registers are cleared and the power supply is in the a listen address which corresponds to the d.i.p.-switch programming, the "addressed" l.e.d. is illuminated. The "remote" l.e.d. is also switched on if the fron pantroller is continuously sending the the mote Enable (REN) message.
If the remote l.e.d. is on, the powe
Fig. 1. 96 LS488 functional block diagram

WIRELESS WORLD DECEMBER 1980
Table 1. The programmable power supply responds to the following
tha My List Adress tot switch.' On receipt goes into Addressed state.
DAB Data Byte. ASCll digits and Carriag
DCL Device Clear message, may be received at any time. Sets the remotely clears the overload condition if ac

SDC
Selected Device Clear (only when
LLO Local Lockout, prevents the operator returning the supply to the local
GTL Go to Local. The GPIB controller locally by the operator.
REN Remote Enable. If this message is true, then receipt of MLA sets the state.
MTA My. Talk address. Used by the controller to set the supply interface
in the Talker mode to send a status byte(s). Used to transmit the overload condition.
SPE
SPD tion with MTA.
Serial Poll Disa
C Interface Clear
$\left.\begin{array}{l}\text { UNT Untalk } \\ \text { UNL Unlisten }\end{array}\right\} \begin{aligned} & \text { Reset the GPIB } \\ & \text { interface logic. }\end{aligned}$

The supply will send the following GPIB
messages. SRQ Service Request, in response to
Sevvice Request, in response to
overload condition (rsv=request ser-
vice).
Requested Service, transmitted as
bit 7 (D107) of the status byte in response to the MTA and SPE messages. RQS will be active if r sv was
active. The remaining bits of the status byte have no meaning and are transmitted passive false.
PPR $_{n}$ Parallel Poll Response n, pro-
grammed by the GPIB controller grammed by the GPIB controller.
The local message "individual status" (ist) is in this case hard-wired to the overload condition signal. An ac-
tive Parallel Poll response in PPAS t tive Parale indicates an overload condition
ist $=0$ ist $=1$, or no overload if ist $=0$.

GPIB interface function subsets
SH1 incorporated in the power supply.
$\begin{array}{lll}\text { SH1 } & \text { Source Handshake. } \\ \text { AH1 } & \text { Acceptor Handshake. }\end{array}$
AH1 Accepto
TG
TGO
Talker.
TEO No Extended Addressing.
$\begin{array}{ll}\text { L4 } & \text { Listener. } \\ \text { LEO } & \text { No Exten }\end{array}$
SR1 Service Request.
RL1 Complete Remot
PP1 Parallel Poll with Remote Configura-
DC1 $\stackrel{\text { tion. }}{\text { Device Clea }}$
DTO No Device Trigger Capability.
CO No Controller Capability
supply output voltage will be zero because the data register is empty. Pushing the local switch restores the unit to manual a. Local Lockout (LLO) message which prevents the user from returning to manual control. This facility allows an automated program to remotely set a
voltage and prevent interference by accivoltage and prevent interference by acci-
dental button-pushing. The power supply
may be unaddressed by the Unlisten (UNL) command or by the system command Interface Clear (IFC), either of which will leave the unit in the remote tate. If the controller sends the REN message false, the
manual mode.
The programmed voltage can be altered by the controller re-addressing the supply and sending two digits followed by a carriage return. Alternatively, the voltage may be set to zero by a Device Clear
(DCL), or Selected Device Clear (SDC) command which is functional only on
listener-addressed instruments. The listener-addressed instruments. The
"clear" messages also clear the overload latch. If the supply output is overloaded,
which illuminates a warning light, forces the d-to-a output to 0 V , activates the "request service" (rsv) input to the bus in-
terface, and passes the overload signal to terface, and passes the overload signal to
the "individual status" (ist) input of the bus interface. Under manual control, the operator can try to clear the overload by pressing the overload reset switch. If the fault condition disappears, the supply will grammed voltage. If the fault condition persists, the overload latch will remain in the set state. The 96LS488 relays the rsv input to the controller via the Service Request (SRQ) message. The SRQ line is a on the bus, and the controller should be programmed to conduct a serial poll of instruments on the bus to determine which have requested service. To perform a serial poll on the power supply, the controller
issues the talk address (which is in this case the same as the listen address) and the Serial Poll Enable (SPE) command. During a serial poll the 96LS488 in the power supply outputs the Requested Service data byte. In this design the other seven

bits are unused and will be received as zeros. In a more complex instrument the seven bits can be transmitted as useful information in a Status Byte (STB), the case, RQS is transmitted as a one if an overload condition exists. The controller should take some action to remedy th problem, such as issuing the Clea The ist message input to the parallel poll function allows the controller to determine the state of the overload latch at any time

Logic operation

The 96LS488 is assumed to be a black box with only the named pins in Fig. 4 connec ted to the circuit - the Acceptor Handshake RxSt (output) RxRDY (input), the Listener Addressed (LAD) Re mote/Local $\overline{\mathrm{R}} / \mathrm{L}$), and Clear ($(\overline{\mathrm{LR})}$) outStatus Strobe (StSt) and Ready (St RDY) Inputs from the power supply are the Return to Local (rtl) and Request Service (rsv) signals. Other necessary connection are the mode pins (M0 to M3), used to talker (addressable) state, and the switchable address inputs (A1 to A5) which provide 31 talk and listen addresses. A rese pin (MR) initializes the clock and the incrystal at power-on. The i.c. can use a
crer on the Xtal and $\overline{\mathrm{CP}}$ pins but, because there is no critical timing within the power supply, a relaxation oscillator running at about 10 MHz is adequate. When the 96LS488 is in the Listener and drives the addressed l.e.d. The bus data uses negative logic so the 74LS240 inverting buffer provides positive logic sig-
als within the supply. The message format is $<\mathrm{nn}$ CR $>$ where n is an ASCII digit trobe signa $\mathrm{P} \times \mathrm{ST}$ carriage return. The valid data are present Referring to wis valid data are present. Referring to Fig. 4, 4LS173 registers (positive clock) and one half of a 74LS73 JK flip-flop (negative clock). Initially the $J K$ is reset so Q is low, $\frac{\text { which enables the clock to the units latch }}{(E 1)}$. Because \bar{O} is high, the clock enable of the tens latch is high and the clock is ineffective. If an ASCII digit is present it is detected by the three gates connected to the second clock enable ($\overline{\text { E2 }}$) of both latches. The code for an ASCII digit is sentation of the number. Therefore the clock will only be effective when a digit is present. This ensures that only b.c.d. di${ }_{74 \text { L }}$ gin be loaded into the registers. The RxST, Q goes high which disablese of units latch and enables the tens latch. If the second data byte received is an ASCII digit, it is clocked into the tens latch by the next positive edge of RxST. Therefore, the two sequential ASCII digits are stored as inverted and fed back to the RxRDY input of the 96LS488, which causes the Acceptor Handshake function to cycle synchronously with the local clock. The power supply does not hold up the three-wire ably the fastest interface adaptor connected to the bus. The RxST signal is taken with the buffered bus data to an ASCII carriage return decoder comprising a way demultiplexer. Output 07 of the demultiplexer goes active-low when an AS-

Fig. 3. Programmable power supply

CII CR is present and RxST is active, denoting valid data. The detection of CR terminated when RxST goes inactive. Carriage return has two functions, it sets the falling edge of RxST clocks the flip flop to the reset state. Secondly, the positive edge of 07 clocks the 74LS273 8-bit intermediate register. The two b.c.d. digit output of the octal register is used as the
input to the b.c.d.-to-binary and binary-to-analogue circuits. The purpose of dualrank registers is to prevent spurious variations in the power supply output before carriage return message delimiter has bee The logic is expand by replacing the JK flip-flop with a binar counter and adding further data registers. The flip-flop in this system operates as a counter to identify the two ASCII digits,
By using an n-bit counter with fully-de coded states, 2^{n} digits can be stored in an equivalent number of registers. A diagram of this system is shown in Fig. 5. Furthe possible enhancements include the recognition of remote programming
parameters such as V for volts preceding the ASCII digits. Delimiting the data string at each end has the added benefit of increased data protection because the supply will only respond to a remote mes sage comprising $<\mathrm{Vnn} \mathrm{CR}>$. An alterna-
tive delimiter such as A for amps can b used to load a different set of register if, for example, a current-limit control is in cluded.
The two b.c.d. digits in the 74LS273 ar

WIRELESS WORLD DECEMBER 1980

Transhorizon

microwaves
Transhorizon propagation on frequencies Transhorizon propagation on frequencies
above 30 MHz is generally considered an unwanted, anomalous phenomenon by telecommunications and broadcast engineers, causing interference to carefully planned systems. But for the enthusiast
such conditions are the very essence of his such conditions are the very essence of his
endeavours to work over ever longer distances with low power, no matter how fleeting and unpredictable may be the contacts. The results of experiments carried out over several years by British
Telecom (Post Office) are thus likely to be more welcome to amateurs than to professionals, (papers by M. T. Hewitt and A. R. Adams presented at URSI Commission F Symposium, Canada, May 1980). For they show that measurements made over
1300 hours on 11 GHz signals received at Martlesham, Suffolk from Rockonje, Netherlands, a mostly sea path of 191 km , indicate some degree of signal enhance-
ment due to ducting for no less than 10 per ment due to ducting for no less than 10 per cent of the total time, with a daily maxi-
mum occurrence around 1800 GMT apparently due to the presence over the path of air originating on the mainland during the warmest part of the day. Very long events (over 64 hours) have been recorded when an and andes a drift of warm air from the mainland over the cooler sea air, producing ducts that can extend over several hundreds of kilometres. Good results have been achieved in identifying periods of advecton from temdence inversions can be identified from radiosonde levels. British Telecom are also carrying out research into 17 GHz trans horizon propagation.
Martlesham and Ipswich amateurs won
the RSGB's 1980 VHF National Field Day with equipment that included a solid-state 120 W 70 MHz transmitter (two BLY90 transistors in final amplifier); 144 and 432 MHz equipment based on transmitters
using 4 CX 250 B valves; and a 1.3 GHz using 4CX250B valves; and a 1.3 GHz
transmitter producing 200 W output from four 7289 valves. Their receiver front-end devices included SD306 (70MHz), BFT66 $(144 \mathrm{MHz})$, NE21935 (432 MHz), NE64535' (1.3 GHz).

EMC and domestic

equipment

The problems of operating transmitters in close proximity to domestic electronic equipment (i.e. electromagnetic compati-
bility or e.m.c.) continue to occupy the bility or e.m.c.) continue to occupy the
thoughts of those concerned with the regu latory aspects of amateur radio. The IARU Region 1 Bureau has recently released a report covering replies to a questionnair on e.m.c. matters sent to its member-
societies. This shows that attitudes towards
radio-frequency interference by different licensing authorities differ considerably, ranging from those that are sympathetic to
the amateur and recognise that the problem stems basically from the poor immunity of many domestic equipments, to those holding the amateur responsible for any interference not only to broadcas equipment such as electronic organs, record-players, etc. The Sierra Leone society was in the happy position of being able to reply that "there has been no repor on record of interference by amateu In a prus etc.) all cases of ferred to the national society. Norway in sists that equipment showing insufficient ers or importers fitting any necessary filt ers or importers fitting any necessary filt-
ers. In Denmark the offical attitude is generally favourable to the amateur operator but cases can involve delays during which he has to cease operation at those times when interference may be caused. The
Swiss authorities are very helpful to the amateur but there is an unofficial recommendation that equipment should not be expected to provide immunity at level above $1 \mathrm{~V} / \mathrm{m}$ (which does not cover all cir cumstances) and efforts are being made by
the USKA society to raise the immunity level to 5 or $10 \mathrm{~V} / \mathrm{m}$. Dutch amateurs complain that they cannot persuade their authorities to admit that "an electronic organ is not a radio receiver" and this to co-operate with the PTT licensing authority (Dutch amateurs seem to be particularly badly placed). The Swedish manufacturers supply, free upon request, highpass filters and/or mains filters; radio dealers are authorised by the Swedish
Electrical Testing Authority (SEMKO) to make minor modifications to equipment to increase their immunity to radio-frequency

interferenc

Licence delays

The annual autumn bulge in applications for new amateur licences has been resulting in delays of up to about 8 weeks. With over 2500 "passes" at the May Radio Amateurs' Examination, and with all signs
pointing to an unusually large number of candidates for the December exam, the Home Office licensing section is also hav ing to cope with the public response to the invitation to comment on the "Open Channel" proposals. This may be one reason
why the Home Office is not showing any enthusiasm towards the proposals for the introduction of a British "novice" licence. It is not widely know that while the Home Office accepts RAE "pass slips" teur Radio Certificate" to persons who have passed both the RAE and the Post Office Morse Test but who do not wish to
take out their own station licence: this certificate permits operation of amateur
stations under the direct supervision of the licence holder.

Around the bands

Further experiments aimed at establishing

 the Atlantic during the summer came near to success. A group of British amateurs, using the callsign G4DGU/P, set up a temporary station in North Devon with a $400-$metre-long rhombic aerial erected on four 8 -metre poles. Positive identification of signals from this station were made by Andy McLellan, VE1ASJ in St John, New Brunswick, Canada, but no two-way
contacts proved possible. It is contacts proved possible. It is hoped to
hold further tests during the August 1981 Perseids meteor shower. Stewart Perry, W1BB, long-time 1.8 MHz enthusiast, is proposing a "gen tleman's agreement" for 1.8 MHz long distance operation in which 1800 to
1810 kHz is reserved for c.w. only, 1810 to 1825 kHz for s.s.b.c.w. and 1825 to 1830 kHz ("the dx window") for c.w. only Band-planning problems should be eased when the 1979 WARC allocations com into effect since these will include a com
mon international allocation whereas at present different countries impose different band limits.
The Radio Amateur Invalid and Blind Club has reminded its members that it is possible to take an oran or written Radio that application, with a doctor's certificate, is made in good time to the City and Guilds of London Institute (Mrs S. Conacher) The Royal Signals Amateur Radio Society now has more than a thousan to 1084 of whom 575 are life members . . Attempts are being made to raise $£ 40,000$, half of the estimated cost of replacing the OSCAR "3A" satelitte lost last May. A
further Ariane launch opportunity may further Ariane launch opportunity may
occur in early 1982 .. A v.h.f. repeater operated by the Amateur Radio Association of Bahrain on 144 MHz channel R6 enables amateurs on vessels in the Arabian Gulf to work over distances of up to about
300 miles. Since it is regularly used by only four local A9X amateurs, other amateurs sailing in the Gulf are welcome to make use of this repeater which has an output of 20 watts from an aerial height of 220 fee above sea level. .The death has bee
reported of Patrick Conway, E13Z veteran Irish amateur and long-time reader of the IRTS's Sunday morning 3.5 MHz news bulletins. . . . West Germany has introduced a new form of transitiona
licence (prefix DH) providing limited licence (prefix DH) providing limited
facilities for c.w. and rtty operation between 3520 to 3600 kHz and 21090 to $21,150 \mathrm{kHz}$.

Intermodulation at the amplifier-loudspeaker interface

Part 2: Causes/how to avoid it/measurements on four types of amplifier circuit
by Matti Otala and Jorma Lammasneimi Technical Research Centre of Finland

The effect described is but one of the numerous phenomena affecting th eproduction. It does not seem probab hat its distortion could be dramatically higher than the measured SMPTE intermodulation distortion of the amplifier, unless protection circuitry
malfunctions. However, the theory presented may explain some of the subtle differences in the sound quality between different circuit topologies having therwise equal standard measurement data. Noting that most valve amplifiers
have basically a high open-loop output mpedance and employ moderate amounts of feedback (the situation is nverse for many solid state amplifiers), he theory may also explain some of the

The analysis of part 1 shows that the loud peaker reflects back to the amplifier sig al which may be of the same order of magnitude as the original drive signal. The put impedance of the amplifier is compar be to, or greater than, the specified load mpedance.
Inside the feedback loop, the amplifier must now hande two simultaneous, large oudspeaker reaction signal. If the amplifier has any internal non-linearities, thes wo signals may interfere and produce in rmodulation components with eac ther. As the input signal is normally composed of a full frequency spectrum, but the
oudspeaker-generated reaction consists redominantly of frequency component near the cone resonances and crossove filter resonances, the nature of this distor ddition, the positive maxima shown may cause unwanted clipping near amplifie maximum output power
The basic reasons for the distortion are that (a) the loudspeaker does not simply it. (b), Although the closed-loop outpu impedance of the amplifier is apparently very low, it is not a true physical impedance as it has been generated by feed oudspeaker reactive current to cause corrective signal which circulates around
he feedback loop. (c) In the internal noninearmites of the amplifier this signal will produce a change in the spectral composition of the distortion products.
The two basic characteristics affecting the magnitude of this distortion are the open-loop output impedance and the
amount of feedback. The dependence is undamental, i.e. if one or both of these characteristics is brought to zero, interface intermodulation will not occur. The effect ncreases with feedback if the feedback is small or moderate say, below 20 dB . onger increase distortion. Also, it is generated in the internal non-linearity of the mplifier. As it is basically a low-frequency effect, the stage where the non-linearity is The above analysis requires sufficient linearity from the amplifier for the transforms to be valid. In high-quality audio amplifiers this condition is usually met in the normal operating range of the unit. the amplifier to enter a region of severe non-linearity when operated in the vicinity of its maximum output power. The need of anon-linear analysis is indicated in this case.
We propose the following general defini-
Interface intermodulation is a form of distortion in a feedback two-port network, caused by non-linear interaction between

Fig. 8. Measurement setup for interface intermodulation. Amplifier under test A, is fed by andion signal while high-quality high-power auxiliary amplifier A_{2} delivers a
low-frequency signal. By alternately closing switches S_{1} and S_{2} both signals are adjusted to have same power level in load resistance R_{1}. After closing both switches, audio frequency signal. Numerical values whith a spectrum analyzer and referenced to the
the input signal of the two-port and a signal xternally injected to the output port propaaring into the input via the feedback net
This general definition is specifically used in sound reproduction equipment to denote the distortion caused by the energy stored or generated in the loudspeaker system re-entering the output of the power

Measurement

It is possible to measure interface intermodulation by using normal distortion mea-
surement methods. In this case the standard output loading resistor is replaced with a simulated reactive load or with a real loudspeaker. In many cases the measured distortion is increased and the specchanges. However, in the real-world situation, a set of standardized loudspeaker loads would be needed and, because of the frequency dependencies of these loads, it would be necessary to resort to swept This tedious procedure can be replaced by a simpler universal method described below. The loudspeaker reaction can be simulated by letting the amplifier operate on a forward signal, while injecting a backtermodulation is generated, it will manifest itself through intermodulation products between the two signals appearing at the

WIRELESS WORLD DECEMBER 1980

Fig. 9. Typical measurement result from high-quality commercial power amplifier how the 63 Hz signal has been attenuated 24 dB by the feedback. Interface

Fig. 11. Compound-stage circuit (A). auiescent current 100 mA ,
output impedance
0.9 ohm

Fig. 10. Circuit used in the distortion measurements. Operational amplifiers HA2505 form the driver stages, and diodes constitute the dominant non-linearity. Various output
sections PA are shown in Figs 11 to 14 .

Fig. 12. Complementary double emitter
follower circuit configuration (B). Quiescent current 500 mA , open-loop
power source must also have sufficient
power source must also have sufficient
power output. A safe rule is that the rating of the power source is five to ten times greater than that of the amplifier under test.
Both switches S_{1} and S_{2} are closed, with both output signals being fed simul-
taneously to the load. The intermodulation products between the two signals are measured across the load by using a spectrum analyser or an intermodulation distortion analyser.
Troducts (i.e. neg of intermodulation products (i.e. neglecting all harmonic components of the primary signals) is calculated and the distortion indicated as a percentage, referenced to the audiofrequency signal at the output of A_{1}.
The test frequencies used are in most cases not critical and can be selected to minimize the effect of such external disturbances as mains frequency hum. Their frequency ratio may be optimized so that the harmonic frequencies of the low-frefrequencies of the intermodulation products. Various frequencies and load resisducts. Various frequencies and load resis-
tances may be used in different countries,

Fig. 13. Quasi-complementary power amplifier circuit (C). Quiescent current 100
mA , open-loop output impedance 2.7 ohm.
depending on mains frequency and stan
dard loudspeaker impedances. The result reported were obtained using a load resistance of four ohms and frequencies of 63 Hz and 1032 Hz . A typical measuremen result is given in Fig. 9, which shows th

Comparison of amplifier circuit topologies
The theory developed predicts that the amount of interface intermodulatio distortion depends primarily on three basic power amplifier characteristics: Open-loop output impedance, amount of feedback and closed-loop non-linearity of the cir cuit. The first two properties especially
vary considerably among amplifier circuit topologies. To make a valid overall comparison of different topologies, all the circuits should have

- the same closed-loop gain
- same output damping fion, and
closed-loop output impedance.
These rules represent the market place

Fig. 14. Grounded-emitter complementary mA , open-loop output impedance 60 ohm .
amplifier designs having similar overall specifi
logy.
logy.
The first rule is based on the assumption that amplifiers of equal output power and equal input sensitivity are compared. The second rule is based on the fact that
commercial amplifier designs are limited commercial amplifier designs are limited devices and thus their total gain-distortion quotient is therefore fixed in competing designs of comparable price. Local feedin various proportions, but in otherwise in various proportions, but in otherwise
optimal designs the total closed-loop intermodulation distortion tends to be the same irrespective of topology, especially at low frequencies which are of interest in the case of interface intermodulation. mercial necessity of having a reasonable or comparable damping factor specification, irrespective of topology.
The circuit shown in Fig. 10 was used for the comparative measurements. Diode the magnitude of which can be adjusted by changing values of $\mathrm{R}_{2}, \mathrm{R}_{5}$ and R_{6}. The same resistors also set the open-loop gain and thereby In the measurements four

WIRELESS WORLD DECEMBER 1980

${ }^{0.2}{ }^{0.2}{ }^{0.3}{ }^{0.3}{ }^{0.4}$
Fig. 16. Measured open-loop transfer characteristics of the various circuits after
adjustment discussed in text.

OUTPUT VOLTAEE $\left(V_{p k}\right.$ -
Fig. 17. Measured interface
Fig. 17. Muasured interface
intermodulation distortion for the various amplifier circuit topologies. Results indicate clearly the roles of open-lo
output impedance and fed

$$
\begin{aligned}
& \text { vat } \\
& \text { meas }
\end{aligned}
$$

crrcuits, while Fig. 16 shows the measured open-loop transfer characteristics of the circuits. After adjustment of the circuits, intermodulation measurements were carried out following ti.e procedure
outlined earlier. The main results are summarized in the table. Fig. 17 shows the measured values of distortion as functions of the output level. The results are in agreement with the theory presented results measured for the selt with earli ing a constant value of feedback in the comparisons ${ }^{2}$.
The results demonstrate clearly the role of the open-loop output impedance of power amplifier in the generation of in
terface intermodulation distortion, various amplifier topologies differing with each other by almost two decades. However, you must not draw far-reachin conclusions of the general usefulness of the various output circuits tested. There may
exist ingenious ways to modify any of the topologies so that they will satisfy criteri for low interface distortion. Furthermore, the circuits seem to differ considerably in

WIRELESS WORLD DECEMBER 1980

Japanese giants begin war for home video standard

Early in July, Sony unveiled its Video Movie
unit, which represents the hardware end of its professed aim to establish a home video standard format, similar in scope to the 8 mm world-
wide film standard. This is based on the Sony wide film standard. This is based on the Sony
XCI c.c.d. camera, 13 of which were supplied to Nippon Airways in January.
Blaupunkt, Eumig and Kodak are rumoured
to be in the act of producing similar machines but Sony seems to have got in first, if only with non-pro-
duction samples. duction samples.
Most of the can
Most of the cameras will feature,
as do the Sony and Hitachi, "dubed sound" which can be
added during or after filming. added during or after filming.
The challenge, according The chatlenge, according to
Sony, has been to develop a colou video camera and video recorder in
the same box which could rival the the same box which could rival the portability of 8 mm film cameras.
Although the unit was demons
trated at the recent Photokina Exhitrated at the recent Photokina Exh bition in Cologne, Sony say they
"don't want too much said about it at the moment, because it will no be available to the public for abour
five years." Even so tive years." Even so, many in
terested parties have been provided with technical material
Whatever the reason for this reble cence it seems that the Video
Movie, which uses a flat $1 \times 1.2 \mathrm{~cm}$ charge-coupled device image senso and 8 mm metal particle tape as wel
as featuring "fast search" as featuring "fast search" and
"still-frame playback", it is likely suil-frame playback, , it is
to suffer stiff competition, espe
ciolly cially from Hitachi, who demons
trated the "Mos Camera" in Tokyo rated the "Mos Camera" in Tokyo
in September. Hitachi say their camera will be ready for production early next year, comple-
ren menting the company's "Mag Camera," which
appeared simultaneously. appeared simultaneously.
It seems that all these units will depend upon a portable electrro-optical system which replaces the conventional vidicon-based camera and
offers advantages such as the capacity to deal with 100 times more light than the vidicon type without "blooming" or producing a "burn-in," which
tube.
However, there are some notable differences However, there are some notable differences
between the Sony and Hitachi cameras including 12.7 mm wide tape in the Hitachi and a
difference in weight, with the Hitachi at 7.51 b difference in weight, with the Hitachi at 7.51 b
and the Sony at 4.4 lb . While the Hitachi runs and the Sony at 4.4lb. While the Hitachi runs
for 2 hours the Sony runs for 20 minutes, but since no details of tape speed have been given for the Hitachi camera (Sony unit runs at $2 \mathrm{~cm} / \mathrm{s}$,
it's difficult to make a direct comparison. The self contained v.cr in the Sony The self-contained v.c.r. in the Sony unit
employs the helical scan, slant-azimuth technique used in the company's highly successful Betamax video system and although it is by no
means certain that identical principles are used means certain that identical principles are used
in the Hitachi version, the description "Mag Camera - portable v.c.r. camera combinatian",
suggests a common circuit approach. Power suggests a common circuit approach. Power
consumption of the Sony unit is 4 W , with
energy supplied by rechargeable cells (replay,
editing and/or format transfer units are mains powered) and the camera slots into ane mains replay
unit where it is wound back before being viewed unit where it is wound back before being viewed on the user's TV receiver.
Sony's apparent hurry to get the public in-
terested in the Video Movie is presumably an

rder to to bring commercially advantageous order to the currently chaotic state of the home
ideo market place, where three incompatible ystems are fighting for ascendancy, each with accepted world standard system. Clearly, the companies in the field, including Sony and to the full potential of new
devices, without threatening (if
possible) the conventional home possible) the conventional home
video range of products - this
could could account for Sony's apparent
ambivalence in not wanting too ambivalence in not wanting to
much said. The public reaction to
the sudden partial redundancy of the sudden partial redundancy of
several relatively bulky units alseveral purchased (the hardware of
ready VHS, Betamax and V2000
the systems) may well be a matter of
acute concern to the home video marketing men.
Matsushita has also demonsMatsushita has also demons-
trated a prototype machine, using trated a protorype machine,
what it calls "charge priming transfer," "r reputed to combine the dy-
namic range of m.o.s. devices with namic range of m.o.s. devices with
the very low noise of c.c.d. devices and this unit is expected to
production within two years. The price of all such video camera units is likely to be close to
$£ 700$ which is the figure predicted for the Hitachi machine at its introduction to to the Japanese market in
Spring 1981. According to Howard Steele, managing director of Sony Broadcast Ltd, it is only a matter of ime before a domestic c.c.c. c. camera/recorder is
developed for ENG (electronic news gathering) in television broadcasting.

Computer servicing course

at Slough College

unique course designed to educate and train

pcience, or computing, and to fit them for em-
ployment ployment as customer service engineers in the
computer industry, began this year in Slough computer industry, began chis year in Slough.
The first meeting to discuss the proposed course was held at Slough College of Higher Education in March 1978 and was attended by several computer manutacturers, reppesenta-
tives of the Manpower Services Commission and college lecturers. A working party including manufacturers and lecturers was set up and the received approval by the Technician Education Council (TEC) as being suitable for the award of Technor Technician Certuificate in Computer Technology. At the same time a moderator was
appointed, who visits the college at regular inervals to check progress. In February 1980 the first full-time one-year
course began for students who had been course began for students who had been
carefully selected by the three manufacturers responsible for their periods of industrial
training (Data training (Data General, Digital Equipment and
Hewlett Packard), also by the Manpower Ser-
vices Commission (offering support under the TOPS scheme) and by co
The indurers a slough. the Easter sind summer vacations) ensures that students will be skilled in aspects additional to hose presented at the college. Hewlett Packard provide training in the use of disc systems and programming techniques and they, along with tures on companies involved, have given lectures on specialist subiects.
Recruitment for the sixteen TOPS-supported places for the next course, which runs from places for the next course, which runs from
January 1981 to December 1981, has begun.
Some previous Some previous work experience is essential, the
course having been intende for poople who course having been intended for people who
want to be re-trained for the computer industry, want to be re-rrained for the computer industry,
and initial qualifications can be wide-ranging.
Further details of entry requirements Further details of entry requirements and the
course structure are available from Dr E. Hucourse structure are available from Dr E. Hu-
zan, Head of Computing Division, Slough Colzan, Head of Computing Division, 1 , 1 ,ough $\mathrm{co-}$
lege of Higher Education, Wellington Street,
Slough SL1 17G, Berks. Telephone Slough Slough SL1 1 YG , Berks. Telephone Slough
3458, ext. 37 .

European drive on
 microelectronics

Because individual European electronics com-
panies, left to tememselves, are obviously unwil
ling to compete with the Americans and Japanese in integrated circuits, the European Communities Commission says there is in opean an
urgent need for concirted action within the urgent need for concerted action within the
Common Market group of countries. If one of the Commission's proposals goes through this could mean that, from January 1981, up to fifty
per cent of the cost of $R \& D$ in the manufacture per cent of the cost of R\&D in the manufacture
of devices using sub-micron technology could be paid for directly out of poblic funds. This aid
would include the development of would include the development of prototype
年uipment intended to come on the market by
1985 . It would also include up to 50 per cent of the cost of the lease or purchase of the prototypes by users, as well as engineering work to be
carried out by them and by the equipment carrired out by them and by the equipment
suppliers to bring the equipment to the required performance.
Conditions
find
Conditions. for aid, however, would require
commitment from a number of companies to use the prototypes from a particular manufacturer and to invest their resources in
the necessary engineering work. The the necessary engineering work. The number of
companies would vary according to the type of equipment concerned and would be settled type by type. The Commission suggests that approved projects should be nationally financed
within a co-ordinated framework of commitment and that, where at least three Community countries are participating, governments of mem-
ber countries could be reimbursed by the Comber countries could be reimbursed by the Com-
munity up to half the cost of the support they munity up to half the cost of the support they
are providing. Such a financial method would are providing. Such a hinancial method would
be a compromise designed to combine the ad-
vantages of using vantages of using national resources and mech-
anisms quickly, with the Community providing anisms quickly, with the Community providing
a coherent framework and incentive subsidies
when the proiect had true Conmunity dines when the project had a true Community dimen-
sion. ECC is worried by the fact that the Com-
Theit lags behind the USA and Japan in both munity lags behind the USA and Japan in both
the production and the application of microelecthe production and the appication of micreete-
tronic devices. It notes that it is 65 per cent has a far higher dependence on the most adanced digital i.cs. The weakness of European production (under 10 per cent of the total today)
is the more unfortunate because this is a growing world market, expected to reach some $\$ 70$ billion in $1980-84$, and the USA and Japan are
the only maior competitors. They, however, have invested millions in well planned strategies, while The Community market remains fragmented.
ane testing. This could be undertaken by uni-
versities and research institutes in close coversities and research
operation with industry
The strategy also identifies the need to promote a European equipment industry. The Commission sees this as the weakest Commu-
nity sector. Production knowledge and equipnity sector. Production knowledge and equip-
ment has generally been licensed or purchased ment has enerally been licensed or purchased
from the USA, when it is usually already out of
date. Ther date. There is need for investment and close
collaboration between prospective European uscollaboration between prospective European us-
ers of the equipment and the equipment manuers of the equipment and the equipment manu-
facturers if the Community is to make headway
in this field in this field, but national markets alone are too on the scale needed.
The proposals to help European microelectronics are in fact t ortro of a much larger initiative-
on "telematics" (a word derived from "telecom-

Communications and controlled under one roof, says ACARD The main recommendation of a report pub-
lished in September by ACARD, the Advisory lished in September by ACARD, the Advisory
Council for Applied Research and Development, is that one minister and one government department should be responsible for or-
ganising what it calls information technology IT).
These initials have been coined to cover the
wide range of techicaca activities which wide range of technical activities which fall un-
der the headings of communications and com puting, covering conventional radio communication, the use of word processors, digital
ielephone exchanges, electronic mail viewdat telephone exchanges, electronic mail, viewdata
systems airt other aspects of digital information propagation and processing including optical
fibre networks. fibre network
The report surveys the developments which
are likely in IT, the possible applications in are likely in IT, the possible applications in
different sectors of the coonomy and contrasts (as does the Labour Party's report entitled
Microelectronics, also reviewed in this issue) the Mbsencecco of conererent rovernment policies in the UK with the developed and developing French strategy for exploitation of the technology.
A further important recommendation is that A further important recommendation is that
the Post Office (or its successor) should "have. the mandate to provide a world-competitive UK communications network and should have suffi-
cient finance for procurement and installation, ient finance for procurement and installation,
whether from private or public sources." whether from private or public sources.
Further recommendations include modification of the copyright laws to cover information
held in forms other than paper, thus givin held in forms other than paper, thus giving
protection to users of IT. Perhaps more imporant, they urge the government to bring forward proposals for data protection legislation im-
mediately, i.e. to implement the recommendaeinately, i.e. to implement the
tions of tailure of the government to act upon
The uch recommendations, taken with strident
criticism in the technical press criticism in the technical press New Scientiss monkeys", playing on the keys of a typewriter ong enough to write all of Shakespeare's plays) must give pause for thought about the useful-
ness of numerous reports which are seldom, if ver, acted upon by government. Sir Monty Finniston, whose report on the
ngineering profession was published in April engineering profession was published in April
and which has largely been ignored by the present government, said last year that in the
course of his work he had course of his work he had read upwards of 30
such reports produced since $1852-$ none had

WIRELESS WORLD DECEMBER 1980 munications" and "informatics") -the combination of telecommunications and computers
which is becoming known as information technology. The ECC says that Europe is losing out in the "telematics revolution" to its competitors
in the USA and Japan. Even thuygh in the USA and Japan. Even though today,
within the European Community, national govwithin the European Community, national gov-
ernments are spending millions of pounds to support the new teccnnology, the fragmentation
and lack of standardisation in the Community and lack of standardisation in the Community market hinders development. If the Community
is not increasingly to rely on external suppliers
for the most dynamic for the most dynamic growth industries of the
latter part of the century, says the ECC latter part of the century, says the ECC, there
must be greater co-ordination of national plans and cross-frontier co-operation in research, development and marketing of products. Given a
letermined strategy, thinks the Commission letermined strategy, thinks the Commission,
xith its population of 260 m the Community can satch up where it is now lageging seriously be-
ind. "But it will have to act fast") ind. "But it will have to act fast."
A strategy to deal with information techA strategy to deal with information tech-
zology has been decided and the principles were approved by heads of government at their
European Council summit in November 1979.

To try and change this situation the Coun Ministers in September 1979 asked the Commission to submit proposals for specific joint
proiects at Community level with projects at Community level with a view to en-
ouraging the Community to take a leading rol ouraging che Community to a ake a leading role
in developing this technology. The Commission has now produced its proposals for a Community strategy for 1985 , based on discussions with
governments and industry and unanimous governments and industry and unanimous
agreement on technical objectives that need to be achieved if European industry is to be comexitive with the USA and Japan in 1985 . The strategy includes a co-ordination of
national programmes. The Commission is proposing to set up a data bank and arrange for
systematic distribution of information (taking ystematic distribution of information (taking
confidentiality into account) to interested govconfidentiality into account) to interested gov-
ernments of the member countries. In addition research into new concepts is thought to be naior areas of work covering his identified four major areas of work covering chip architecture,
device modelling, language and data structure,
been acted upon! The Finniston Report cost
\& 401,000 and, as reported in Wireless World (october and 1980), allthough no not complesetely ig.
nored by the government, it has not been nored by the government, it has not been imple-
mented in the way Finniston recommended. mented in the way Finniston recommended.
It seems very odd that British taxpayers and engineers continue to tolerate this gigantic
waste. Quite as serious is the fact that litte is waste. Quite as serious is the fact that little is
done to point out to the non-technical decisiondone to point out to the non-technical decision-
makers in government that, for example, the
electronics industy and electronics industry and itso forfshoots are, lease
likely of all western industrial processes to fall likely of all western industrial processes to fall has disappeared, the electronics/communications industries will be thriving and yet the
British government and people do not see it (ie British government and people do not see it (i.e.
the need to invest both cash and initiative) and the need to invest both cash and initiative) and
the British engineer does not shout loud enough about it.
The most extraordinary aspect of the subject
is the utter docility of thos is the utter docility of those who are both British
tax-payers and engineers - to deny status simultaneously with ignoring the economic importance of the industry and the engineer's per-
sonal contribution would probably result in continuous lobbying of M.P.s in many Continental countries, but in the UK it is left to the press
and dedicated people like and dedicated people like Finniston to harangue
impotently an apathetic and ignorant legislature. Even when fundamental financial action is
clearly imperative, as in the case of Inmos clearly imperative, as in the case of Inmos,
where the government stalled over providing the essential second payment, the obsession with saving cash holds sway over more intelliIt is amazing that the frustration of engineers It is amazing that the frustration of engineers
has not turned into an angry demand reverberating through the institutions. HMformation Technology is available from ${ }_{\text {£3.30. }}$

News in brief

Creative Strategies International, a California-
based market research firm, predicts that the based market research firm, predicts that the
world-wide market for teleprinters in 1985 will
exce-d $\$ 1$ billiter rceed $\$ 1$ bilion, refiecting a compound annual
growth rate of 21%. Most of the increase is growth rate of 21%. Most of the increase is
likely to be due to the extension of business
based data communications networks and autobased data communic
matic mail systems.

The BBC's money

Background to this month's ditiorial: According to
a participant in a "Man Alive" BBC television programme last May the independent television companies had a total income of $£ 385$ million in
the vear 197879 to run their one television net work, whereas in the same year the BBC received $£ 315$ million to run its two televisio networks and the whole of its sound broad-
casting services. In 1890 both of these figures casting services. In 1980 both of these figures
can be expected to be higher, in excess of E400
million. The Home Secretary, William White million. The Home Secretary, William White-
law, stated in a Radio Times interview (4 Octolaw, stated in a Radio Times interview (4 Octo
ber, 1980) that the BBC's "net income for this financial year and the next one together should
be about $£ 1000$ million." For ITV, he new franchises for programme companies, due to b ported to be worth about $£ 560$ million p.a.
It is well known that a large number of engineers in the IBA and the ITV programme comAanies have beither participant in the "Man Alive" gramme mentioned that about 70% of applications for engineering iobs in ITV were received
from BBC staff. The salary differences that coum BBC staff. The salary differences that
cocount for much of this drift have been substantial. For a particular senior engineering iob in ITV the maximum salary in 1979 was
ع8,600, whereas the BBC maximum for the equivalent job was $£ 6,480$. In general the salary differences at that time ranged from 25% to
33%. At present the BBC is not losing many gineers to ITV. They say they are having no difficulty in recruiting staff now that they are reducing the number of available jobs and there is much unemployment anyway. The engineering economies which the BBC has made in response to Government pressure have been in both iobs and capital spending General policy has been to arrange the cuts to have the least possible effect on programme
production. Consequently the Corporation has not done anything to impair the operation of its
transmitters and communications systems. Staff
vels in engineering training have also been keep the programmes going out. On capital proiects (studios, transmitters, buildings etc) staffs are being kept at a level vision, radio and external broadcasting wreclorates are able to budget for. Without the preweuld have had to be increased.
Other engineering departments have in genOther engineering departments have in gen-
eral suffered a 15% cut in permitted expenditure. Very largely this has meant a 15% cut in
jobs, amounting to about 130 in the whole of the iobs, amounting to about 130 in the whole of the
Engineering Division. This s being achieved by
natural wastage rather than by redundancies. In

G.I. to expand its Scottish base

| A new plant, fully supported by government | $\begin{array}{l}\text { same site under the Microelectronics Industry } \\ \text { Support Scheme. }\end{array}$ |
| :--- | :--- | General Instrument Microelectronics (a subporation) at its establishment in Glenrothes, Scotand.

This expansion, due for completion in 1985, follows a previous grant to the company by the
Department of Industry to aid the completion of anon-volatile memory production unit on the

News in brief

The ubiquitous microprocessor finds yet
nother (general) application with the introducnother (general) application with the introduc-
tion by the National hhysical Laboratory of a counselling service for manufacturers of mea-
surin equipment, gauges, and orher forms of suring equipment, gauges, and other forms of
measuring tools, generally grouped under the measuring tools, generally grouped under the
heading of "metrology." The NPL can provide
teams which specialise in measurement techniteams which specialise in measurement techni-
ques and combine this expertise with ${ }_{a}$

The BBC's tape reclamation equipment which was recently brought into service for radio and external services in London, is being used here to make tapes suitable for re-use, no
matter what their previous recording function. The service is expected to be extended to regional departments fairly soon.

research and design work this has meant a eesearch and design work this has meant a
corresponding reduction in the range of proiects
which can be pursued. In engineering inform which can be pursued. In engineering informa-
tion there is a slowing in rate of response to tion there is a slowing in rate of response
demand for transmitter surveys and investigaion of reception problems, and also a reduction in the range and amount of published technical Fewer technical manuals are being produced for maintenance engineers and others. In capital spending there has been a deferment of new developments, such as studio
centres in the regions, additional local radio stations, regional extension of Ceefax services and a new radio production centre in Central
ondon. There has also been a slowing down in the re-development of the radio v.h.f. transmitter network. Capital spending is being concen
trated on the replacement of worn-out plant.
same site under the Microelectronics Industry
Support Scheme.
G.I. is the only company manufacturing G.I. is the only company manuacturing
r.o.m. chips in Europe at present and in addi-
ion produces a wide range of devices for operaion in microcomputer systems, telecommunications equipment and entertainment systems
nd games. When complete, the workforce at and games. When complete, the workforce at
Glenrothes is expected to be twice its present size.
nowledge of computing methods to produce mplified measurement practice, giving faster which constitutue the major company element in the measurement and scientific instrument in-
dustries. Full details of the service can be obtained from Mr A. Williams, Division of Mechanical and Optical Metrology, National Physical Laboratory, Teddington, Middlesex
TW11 OLW, telephone $01-977$ 3222, ext. 3031 . New regulations governing the control of Auman exposure to lead come into force on 18 people in the UK are "significantly" exposed to ead and the new requirements will extend the
cope of the 1961 Factories Act, which was scope of the 1961 Factories Act, which was
largely industry-based. Copies of The Contro of
Lead at Work Regulations 1980 are available Lead at Work Regulations 1980 are availab

A plague of fleas at Plessey's telephone equip-
ment factory in Beeston, Nottingham, led to a ment factory in Beeston, Nottingham, led to a
walk-out of more than 100 shop floor workers walk-out of more than 100 shop floor workers
early in October. They returned to work a few
days later atter the factory had been fumigated.
fter holding ons thoughout the UK After holding meetings throughout the UK to programmes, the corporation is to interview 43
contenders for the 15 commercial TV ranchises contenders for the 15 commercial $T V$ franchises
which come up for renewal by Christmas 1981 . ich come up for rewal by Chismas 1 . A microprocessor-controlled fuel injection system for diesel engines is to be developed
iointly by Lucas and TRW, the American conglomerate with interests in optics and semiconductors. The sensors, actuators and othe
hardware will be manufactured by Lucas and he system is expected to be ready for produc the syten is expected to be ready for produc-
tion by mid-1983. Oddly enough, economy of
fuel use is not a major objective and a fuel use is not a major obiective and a
spokesman for Lucas points to the US Environpokesman for Lucas points to the US Environmental Protection Agency's exhaust emission
requirements as the main purpose of the unit's
use.

Microelectronics and Labour

The Labour Party's discussion document en-
titled Microelectronics, published in titled Microolectronics, published in Sep-
tember, apart from one or two howlers such as tember, apart from one or two howlers such as
that on page 1 , where we learn that "semiconthators are popularly known as "chips" "! ') contains a wealth of depressing conclusions about
the state of the British microelectronics industhe state of the British microelectronics indus--
try, as well as some worrying international com-
parisons in technical education and management. ment.
At the same time it emphasises (predictably) the need for far more national involvement and
ownership of companies in the field, with ownership of companies in the field, with
special reference to GEC, which it describes as
playing "a particularly playing "a particularly malign role in British
microelectronics." The need for more national investment is stressed by quoting Sir Arthur Knight's conclusion (as the new chairman of the NEB) that the private market does not provide.
enough capital for the sector and that even unenough capita lob the sector and that even un-
der the last labour government, it was not enough to ensure success."
The document refers to The document refers to what it sees as Sir
Keith Joseph's "political attack" upon the Post Keith Joseph's "political attack" upon the Post
Office, through the break-up of the monopoly, at leas where the supply of terminal equipmenty
is concerned and comments that "The comis concerned and comments that "The com-
bined effect of these measures will certainly be to reduce the profitability of the new Telecommunications Authority by allowing private com-
panies to cream off the most lucrative business and so put their major investment programme at risk." At the end of this section, the point is made that such action could lead to increased
imports of telecommunications equipment to imports of telecommunications equipment, to
the detriment of the major UK suppliers and the workers employed by them. ... "In accordance with party policy these powers and activities will
be eestored to public ownership and control by be restored to public ownership,
the next Labour government."
The comparisons berween, for example, the
French and British telecommunications proFrench and British telecommunications pro-
grammes are in some aspects starting, by grammes are in some aspects startling, by
mentioning that the French are committed to increasing the number of telephone subscribers
from 14 million to 34 million by 1992 , the provision of a free viewdata terminal to each subs-
criber (to permit criber (to permit the eventual replacement of
telephone directories) and the introduction of a direct broadcast telecommunications satellite for business use.
Comparisons are also made between the level of state aid in the two countries, the example of
Inmos being used, where the Inmos being used, where the amount of aid is
less than the toal provided by the French government to three small-company projects in
France. The conclusion is drawn that large sums of money must be spent if progress is to be made - "where private industry does not or
cannot spend, government must - a point accepted by the government of every advanced conomy but our own." The discussion document refers to research
policy in a manner which suggests that bodies
such is i cmand such as ACARD (see news reports in this issues)
are little more than toothess bull are little more than toothless bulldogs. "The
new microtechnology clearly throws up a need new microtechnology clearly throws up a need
to fill (he) gap which ACARD (attached to the cabinet office and composed largely of em-

ployers' representatives and academics) does | ployers' $\begin{array}{l}\text { representatives and academics) does not } \\ \text { meet." Apart from these criticisms, the docu- }\end{array}$ |
| :--- | ment notes the need for legisislation to protect ment notes the need for legislation to protect

personal privacy, in the face of the power pro-
vided to organisations such as the police by vided to organisations such as the police by
computers and other interconnected data systems.
In a section called "Wider Horizons," the
idea of a better use for "own time" is mooted idea of a better use for "own time" is mooted
but not developed. The possibiloities offered by
technological change in the development of lei-
techno activities seem to emerge as a pretext for a puffing piece of political dogma, uncharacteris-
tic of the document as a whole. The main recommendations, however, are
linked with he main areas of criticism, covering linked with the main areas of criticism, covering
research and development, where private industry funds only about 30% (this, the document
says, should be extended by harnessing the exsays, should be extended by harnessing the ex-
pertise of public corporations, universities and peruse of pubiic corporations, universities and
government laboratoris), pubbic purchasing,
telecommunications and public investment. teleco the two latter subject areas, the report says that the development of optical fibre transmission systems and the extension of System XX
must not be restricted by the imposition of strict must limite restricted by the imposition of stric cash limits. "Britain needs to match the political
and financial commitment that the French have shown towards their telecommunications
system" system." In the section on public investment,
the activities of the NRDC and NEB are pro the activities of the NRDC and NEB are pro-
vided as examples of methods of filling the "equity gap."
The final points concern Labour's objectives for the application of new technology, where the
point is made that this necessarily differs from the approach of private enterprisise in thaters fhe profit motive should not be the major consider-
ation, where at present resources are put into ation, where at present resources are put into
entertainment systems rather than medical electroniss, into broadcasting rather then per-
sonal communications and into missiles rather than computer aids for education.
Perhaps the most damning comment, which
occurs earlier in the document is in occurs earlier in the document, is in the section
dealing with education, science and research, deaing with e education, science and research,
where Britain's failure to respond properly to there challenge of the chip is is emphasised and one
important factor isolated -- that we theve "conimportant factor isolated - that we have "con-
sistently undervalued practical technological sistently undervalued practical technological
understanding and this in turn has produced generation after generation of decision-makers

More jobs lost to recession

 Within the next 18 months, another 3,800 jobs will be lost in the radio and tv manufacturing industry. The $£ 10$ million Rank-Toshiba linkup, formed two years ago and crowned by a $£ 3$million modernization programme as well as saving many jobs in Rank's Plymouth and Re-
druth factories, has fallen foul of the strong druth factories, has fallen foul of the strong
pound and the cheap goods challenge from the pound and the cheap goods ch
Far East, according to Rank
About 2,700 jobs, many of them re-deployed
after the closure of the Stoke plant by Rank, are after the closure of the Stoke plant re-deployed Rank, are
currently in danger. Meanwhile, Philips has currently in danger. Meanwhile, Philips has
announced the closure of its tv manuacturing announced the closure of its tv manufacturing
plant in Lowestoft, with the loss of 1100 iobs,
the actual closure being planned for mid-1982 the actual closure being planned for mid- 1982 , This factory has been making domestic radio
and tv sets for 30 years and all future production will be transferred to the company's remaining factory in Croydon.
Another British-Japanese consumer electron--
ics business in trouble is the GEC-Hitachi joint ics business in trouble is the GEC-Hitachi joint
venture colour tv plant at Aberdare, Wales. A GEC spokesman told the Observer (19 October): Trese is a lack of consumer demand and the no improvement in the futurue then its lack of
viability will have to be faced." viability will have to be faced."
Data Recording Heads at Egham
Data Recording Heads at Egham, Surrey, has
had to lay off 97 of its 295 employees because of "crippling recession". The managing director
as said: "We have no choice. has said: "We have no choice ...the cutbacks
are to ensure the survival of the company."

News in brief

The prizes offered by the Department of Industry to secondary schools participating in a com-
petition launched in April and reported in ou petition launched in Aprii and reported in our
June/July 1980 issue, have now been awarded.
Schoolchildren were asked how a microcomputer would benefit their school and the rang of suggestions included the development of school teletext system, programming of ne
dance movements(?) and the running of dance movements(?) and the running of the
school's administration. Winners were selecte schoors administration. Winners were selected
from 650 entries and 117 microcomputers wer eventually awarded (100 planned) with six
"star" prizes being awarded by Sir Keith Joseph "star" prizes being awarded by Sir Keith Josep
to schools in Renfrewshire, C. Armagh, Uttox eter, Mid-Glamorgan, Eweell and Camberley The icea behind the compecition was to act as
catalyst in a national effort to spread comcatalyst in a national effort to spread com-
puting experience quickly into education. Several companies and organisations, including
Shell, GEC Plessey Shell, GEC, Plessey and the Post Office hav made maior financial contributions and ar
offering individual schools continuing help.

On the heels of Teac and Marantz, who recently
introduced cassette recorders using DBX noise introduced cassette recorders using DBX noise
reduction circuits, Matsushita has now made an
arreen sidiary of the UK company BSR, to marke cassette recorders using the system under its
Technics brand Technics brand name. DBX claims that its
noise reduction technique offers the best signal noise
to noise ratio available and that it "virtually to noise ratio available and unat it viruall
eliminates tape hiss." Distribution will begin in
Jpan at first, followid Japan
tion.

The 7 th European Conference on Optical Com-
munication will be held in munication will be held in Copenhagen from
September 8 to 11 1981. A call for papers has been issued in relation to the conference and
further further details are available from the Secretary
of 7 th ECOC, M. Danielsen, Electromagnetics Institute, Technical University of Denmark, DK-2800 Lyngby, Denmark.

Zaerix Electronics has acquired the Rochester-
based based Maxda radio valves and tubes marketening
business from Thorn Brimar Ltd The business from Thorn Brimar Ltd. The complete
valve stock, as well as the testing facilities, have valve stock, as well as the testing facilities, have
been taken over by Zaerix and customer service
and and quality control procedures will be main-
tained at the company's headquarters at 46 tained at the company's headquar
Westbourne Grove, London, W2.

Background information on legislation and current safety standards relating to electrical equipment exported to the US has been published by
the British Standards Institution. The document surveys the most widely used certification schemes and details are give of organisations
which test and certify electrical product survey, called Electrical Equipment Certification in the USA has been prepared by the BSI's
Tectict Technical Help to Exporters service and costs It is available from THE Sales Office, British Standards Institution, Maylands Avenue, Hemel Hempstead, Herts HP2 4SO
Inmos will be opening its first large-scale pro-
duction factory in Newport, Gwent during the duction factory in Newport, Gwent during the
summer of 1982. The factory will manufacture v.l.s.i. products. Production samples of 16 k
static r.a.m. devices are now sailabe statici r.a.m. devices are now availab
company's Colorado Springs unit

Darkroom exposure meter and enlarger timer

Measures print exposure time and controls enlarger

by G. G. R. Rutte

The unit described will measure the required exposure for a black and seconds and tenths; it will then time this exposure. The meter may also be used as a ten minute process timer to count minutes and seconds. Two such meters have now been in use for ove a year, and have proved to be
use.
The circuitry is constructed from easily available components, largely using c.m.o.s. logic, at a cost of about units offering much inferior performance.
Most of the circuitry of the meter/timer is in one box, which provides control of 'expose' and 'tiese' toting, 'on and 'of speed adjustment. The sensor is contained in a separate small box, with the 'measure' switch, used for the meter-set exposure

Circuit operation
The circuit diagram of the sensor is shown in Fiemens LD57C, which is intentodiode, a makers for use as a l.e.d., but which is used here as a blue-green sensitive photo diode because of its ready availability. Its sensitivity to orange safelight is very low,
probably roughly equivalent to printing paper. The ' C ' suffix denotes the high-output type.
The current from D_{1} and D_{2} is integrated by $\mathrm{IC}_{1}, \mathrm{Tr}_{1}$, the output of which
feeds a Schmitt trigger $\left(\mathrm{Tr}_{2,3}\right)$. Feedback to the integrator is via D_{2} and D_{3}, both small, red l.e.ds, D_{2} being used as photodiode - an arrangement which provides excellent isolation of the sensitive Schmitt trigger is in the form of negative pulses, whose length is inversely propor tional to the current through D_{1}, or the incident light, and directly proportional to the required exposure
The specified input leakage current for to be much reduced by operating the inputs at earth potential, and nine out of ten samples leaked considerably less than this. It is thus possible, with selected devices, to operation, D_{1} gives a current of at least 1 pA , and although this sounds an excessively small current for accurate mea-
surement, it does not give rise to problem if the circuit is constructed on good-qual
ity, glass-fibre p.c. board. The integratin capacitor is very small (about 1 pF), and must have a very low leakage; I found tha two lengths of $1-2 \mathrm{~cm} 30$ s.w.g. enamelled wire, twisted together, perform better in tors, and, furthermore, can be trimmed to size.
The Schmitt trigger, $\operatorname{Tr}_{2,3,4}$, has a tem-perature-sensitive hysteresis, to compen sate for the increased sensitivity of D_{1} with temperature rise
The output of the Schmitt is taken to the
logic circuit which is logic circuit which is given in Fig. 2. When
measuring exposures, $\mathrm{IC}_{2,3,4}$ are used to count pulses from a v.c.o., which is controlled by the paper speed potentio meter, during the negative periods of the output of the sensor circuit. At the com
pletion of each count, the measured expo sure is transferred to $\mathrm{IC}_{5,6,7}$ and displayed If the count runs overrange, the 'carry output triggers IC_{14}, and the count stops a 000. Manual setting of exposure time can be ing fast and slow The frequencies (10 and 100 Hz) are derived from the rectified 50 Hz mains waveform via Schmitt trigger IC ICd. $_{\text {d }}$ Switching is bounce. Each pulse, in addition to clock ing $\mathrm{IC}_{\text {After }, 3,4}$ also sets $\mathrm{IC}_{5,6,7}$ After either manual or sensor-deter-
mined setting, the exposure time is left in mined setting, the exposure time is left in $\mathrm{IC}_{2,3,4}$. $\mathrm{IC}_{5,6,7}$ may then be used as a timer
without losing this information. In this mode, after initial setting to zero, IC_{5} is clocked by 1 Hz pulses from IC_{13}. IC_{6} is

Fig. 1. Photoelectric sensor unit. Width of negative-going pulses at output depends
amount of light from enlarger - the brighter the light, the narrower the pulse.

For timing exposures, $\mathrm{IC}_{2,3,4}$ coun 10 Hz pulses down to zero, the exposur time being set into $\mathrm{IC}_{5,6,7}$ before counting
starts. On reaching zero, the carry output goes high, terminating the exposure, and setting the counters again for repeat expo sures. An exposure may be terminated early by pressing the "Off" button.
The display circuit in Fig 3 includes The display circuit in Fig. 3 includes separate voltage regulator $\left(\mathrm{D}_{4}\right.$ and $\left.\mathrm{Tr}_{6}\right)$.
This is because the LM 723 (IC_{17}) was found to give inadequate regulation for the v.c.o. when loaded by the display 1.e.ds Also included in the display circuit is the variable mark-space ratio strobe oscillator
IC_{18}, which may be omitted if a variable brightness display is not needed.
The voltage-controlled oscillator in Fig. 4 deserves special mention. For conve nience, the paper speed control is logarith-
mic: a linear potentiometer is used, to mic: a linear potentiometer is used, to
control a log. v.c.o. IC
I6 is a CA3046 tran sistor array, used as a temperature controlled log. voltage-to-curren converter. This i.c. consists of five $\mathrm{n}-\mathrm{p}-\mathrm{r}$ transistors on a single chip, the transistors having close thermal coupling. Four are used as a thermostat: set to about $40^{\circ} \mathrm{C}$, the oscillator is stable to better than 2%, and settles in 15 seconds. The reference voltage for thermostat and log. converter is de-
rived from the 7.15 V reference of the 723 ${ }^{\text {regulator. } \mathrm{IC}_{15} \text {, an NE5555, is the oscilla- }}$ tor, whose capacitor is charged rapidly by the $1 \mathrm{k} \Omega$ resistor, and discharged relatively slowly by the log. converter; thus, the frequency is closely proportional to th
As shown, the adjustment range on the speed control is approximately $\times 10$, a
further preset adjustment of $\times 10$ being
 the diagram are the connexions of the. carry pins: $\mid C_{5}$ carry in (pin 5) is connected carry pins: $1 C_{5}$ carry in (oin 5 is connected
to earth; $i C_{5}$ carry out (7) is connected to
$1 C_{6}$ carry in (5) and $1 C_{7}$ carry in (5) to earth. $I C_{6}$ carry in (5); and $I C_{7}$ carry in (5) to earth.
may be widened by increasing the 6 k 8 resistor.
The isolated mains switch is shown in Fig. 5. The power supply is derived from as a current limiter. Some triacs require a trigger current of 50 mA , and in this circuit, narrow, high-current pulses are provided by the NE555 oscillator. A curren
of 0.5 mA through the optical isolator of 0.5 mA through the optical isolator 1.e.d.
will stop the oscillator and turn the en larger off.

Construction

I constructed the meter on four printed circuit boards: one double-sided, with the main logic circuitry, power supply stabisided board for the display circuit and two small boards for the sensor circuit and isolated triac switch.
All except the sensor circuit were housed in a "BIMBOX" 6006 (Boss Industrial Mouldings): the sensor was fitted
into a home-made metal and plastic box, which must be electrostatically screened by a layer of aluminium cooking foil. Layout of the majority of the circuit is not at ant crical. The isolated rriac circuit,
since it is at mains potential, should be since it is at mains potential, should be
suitably shielded. The sensor circuit should be arranged to minimize leakage current to the input of the integrator. IC_{1}

$$
\overbrace{10}^{\substack{\text { Unreguitar } \\ \text { suppor }}}
$$ currents.

Setting up
After checking the circuit and supply voltages, the first thing to set up is the log.
converter, whose temperature should be set to about $40^{\circ} \mathrm{C}$: this is not, however, critical. Assuming an ambient temperature of $20^{\circ} \mathrm{C}$, one method is as follows: set the temp preset to minimum resisthe 10 ohm resistor of the heater transistor Connect a $56 \mathrm{k} \Omega$ resistor across the 3 k 9 resistor, and the $1 \mathrm{k} \Omega$ preset, raising the base voltage of the temperature-sensing transistor by about 40 mV . The $1 \mathrm{k} \Omega$ preset can now be adjusted until current just be-
gins to flow in the 10 ohm resistor. Remov ing the $56 \mathrm{k} \Omega$ resistor now reduces the base voltage by 40 mV ; a rise in heating current should now be seen which reduces over about 30 seconds to a value sufficient to Thein the temperature. checked. In light corresponding to a long exposure of about 100 seconds, the negative output pulses should be approximately

pulses should be at least 10 times longer; if not, try another 3140. Adjustment of th output pulses is by trimming the 1 pF capa-
citor (made of twisted wire). The paper speed preset is adjusted to give a suitabl span on the panel mounted control, calibration being by trial and error, with tes strips. Paper manufacturers do not usuall tried, and the appropriate speed setting noted down.
Using the instrument
In measuring exposures, a piece of ground glass, or other diffuser is placed under the
lens, and the sensor placed on the printing frame directly under the lens, before pressing the "measure" button on the sen sor box. The display should now show a stable reading, and the enlarger should be
on. Moving the iris should alter the exposure reading accordingly. Upon releasing the button, the enlarger will turn off, and the exposure will be held on the display Pressing the "expose" button will turn the enlarger on for the displayed time. The Fig. 4. Voltage-controlled oscillator and
p.s.u. Four transistors of CA3046 on lef p.s.u. Fhour trans
form thermostat
"on" and "off" buttons are to control the enlarger for focussing, et The manual setting buttons should or slow. Pressing "time" causes the dec mal point to move one digit left (to be tween the left and middle digits), sets the display to 0.00 , and starts it counting any other function except "on" and "off" and the previous exposure time is recovered.

Component list Integrated circuits

$$
\text { 2,3 TILLOM, DL } 704
$$

Passive components as in circuit diagrams
Resistors $1 / \mathrm{WW}$, carbon film, presets minia
Transformer 9V, 150 mA

Orbit predictions from satellite images

Calculating orbit predictions using scanning-radiometer pictures
by M. L. Christieson Images from polar orbiting satellites,
such as those from TIROS-N and NOAA-6, can be used by the amateu to make reasonably accurate orbit predictions. This article describes a method which has enabled a.o.s.
(acquisition of signal) time to be predicted to within a half a minute for up to a fortnight. After this period, some updating of data is required

A significant problem encountered by amateurs receiving images from polar or biting satellites such as TIROS-N and NOAA-6 is the need to maintain reasonably accurate orbit predictions. The degree of accuracy needed depends on the fully automatic it is often necessary to keep errors to less than half a minute in time and one degree of equator crossing longi tude.
The simplest solution is to obtain a reference orbit from an outside source, and using the orbital period, calculate succes
sive orbits either manually or by using simple computer program. It soon be comes apparent updates erable. Further data can be obtained from outside, but this is not always easy to ob tain, and sometimes can be quite inaccurate because of the long term nature of their production. It is very difficult even to produce accurate long-term predictions because the magnitude of the drag on a satellite in a low-orbit depends on the outer atmosphere, which is affected to a large extent by solar accivity. The level of hence errors can reach tens of minutes over a period of months.
It is therefore necessary to update both reference orbits and orbital parameters regularly; say every two weeks or so. Assumdent, some direct observational method must be used. The most obvious is to use an astronomical telescope to observe the satellite, and provided it is well calibrated, these observations will give the required this method: -the capital outlay in equipment is large -It requires some expertise to use it.
when the sky is dark but the to time

not in the earth's shadow.
It must be known approximately where to look and when.
It is dependent on the weather from radar observation, be the only apart able solution, but the earth imaging satellites are sending pictures looking down at the Earth, and it is possible to use these to find out where the satellite is at a given
time. The scanning-radiometer pictures from TIROS-N and NOAA- 6 lend themselves easily to this. Fig. 1 shows this type of scanning. It can be seen that as the imaging is sent in real-time, the pixels picture elements) representing the point
directly below the satellite (the sub-satellite point) are sent at the time the satellite was directly over this point.
Fig. 2. represents the satellite image from the v.h.f. scanning radiometer signal satellite passes directly overhead all points on the line $a b$ at different times during the pass. The exact latitude and longitude of one point on the line must be measured and this is obtained from the physical de-
tail on the image. It is also necessary to
determine the exact time that the pixels representing this point were sent. The ac curacy with which this information is effect on the final accuracy of the method

Latitude and longitude

 extractionIt is essential that the line $a b$ is drawn of the picture. This section does not in clude sync, grey-scales and timing-marks. When the centre-line has been drawn, the features visible on it are examined for amething that can be readily identified are for example. If the centre-line passes only over sea or cloud it is not possible to use that particular image. Once a point has been selected it must be re-identified on an atlas map, and the exact latitude and longi-
tude measured. In order that the longitude may be measured most accurately a point near to the equator should be used, where the longitude tines are widest apart. It is not possible to identify a random point in
order to measure the longitude of the
centre-line because even after processing on board the spacecraft the image scale is

Time extraction
The v.h.f. signal also contains timing marks down one side of the image (Fig. 2.)
These are short horizontal lines set one minute apart. In order to measure time exactly these marks must be referenced against an outside time standard. This must be done in real-time, and if a tape
recording technique is used for printing it recording technique is used for printing it
must be done as the picture is recorded. In the prototype, which in fact also prints the pictures in real time, a small white line is added every ten minutes. This ten-minute marker can be readily identified on the image, and from an approximate starting technique is also shown in Fig. 2. which illustrates the construction lines. The accuracy of time measurement also has a significant effect on the final accuracy of
the method. the method.
Calculation of the result This sections deals with calculations relevant to an ascending orbit, Fig. 3 (a), and
the formulae used are based on spherical geometry. For a satellite in a circular orbit with period P minutes and orbital inclina-
tion to the equator ϕ the sub-satellite latition to the equator ϕ the sub-satellite lati-
tude is given by fude is given by
lat $=\sin ^{-1}\left[\sin \left(\frac{360 t}{P}\right) \sin \phi\right]$
(1)
t minutes after it crosses the equator. The value for the inclination is well published
and varies only slowly with time. Using the value for lat ($L_{\text {obs }}$) from the observation, and an approximate value for P, which is also well published, the value of t can be calculated by rearranging the equation
$t=\left\{\sin ^{-1}\left(\frac{\sin L_{\text {obs }}}{\sin \phi}\right)\right]\left[\frac{P}{360}\right]$
The time of the observation is known, so $t_{e q}=t_{\text {obs }}-t$
where $t_{e q}$ is the time the satellite crossed the equator. This is the required result.
The longitude of the satellite is given by an equation consisting of three parts
$L G=\cos ^{-1}\left[\left(\cos \frac{360 t}{P}\right) \div \cos L_{\text {obs }}\right]$
$+\frac{t}{4}+L_{\text {eq }}$
where $L G$ is the longitude and $L_{e q}$ is the longitude at which the satellite crossed the equator. The first part of the equation is the actual movement of the satellite, the second is to take account of the Earth's rotation, and the third the starting longi-
tude. All the variables in the equation are known except for $L_{e q}$ which is required. $L_{e q}=L G_{o b s}-\cos ^{-1}\left\{\left\lvert\, \cos \left(\frac{360 t}{P}\right)\right.\right]$
$\left.\div \cos L_{\text {obs }}\right\}-\frac{t}{4}$
(4)

This gives the equator crossing longitude which, together with the time, represents a
reference orbit.

Fig. 2. Typical compilation of a scan received
from the satellite. The horizontal line has been chosen to cross ab, the satellite path, at a point on the coast to enable accurate determination of latitude and longitude from
on the same side of the Earth as the ob server. This type of orbit is shown in Fig. 3(a). Half the usable passes a day result
from orbits crossing the equator on the from orbits crossing the equator on the
other side of the Earth, coming over the other side of the Earth, coming over the
Pole and into the user's view, and then crossing the equator into the other hemisphere. This type of orbit, a descending
orbit, is shown in Fig. 3(b). If the obserorbit, is shown in Fig. 3(b). If the observation is made on a descending orbit, the
existing equations must be modified. At the point when the orbit goes over th Pole, the equations go through a discontinuity thus becoming useless. A convenient solution is to imagine the orbit to be in-
clined to the equator in the opposite sense,

$$
\phi^{\prime}=180-\phi
$$

Using equation 2 , the value of t can be calculated using the modified value ϕ This produces the time taken for the satellite to reach the equator crossing into the
other hemisphere. Therefore the equator crossing into the observer's hemisphere was half an orbit before, ie. $P / 2$ minutes so:

$$
t_{e q}=t_{\text {obs }}+t-\frac{P}{2}
$$

In order to calculate the equator crossing

A more accurate value of period is re quired for longer term prediction, and this can be calculated from two observations taken some days apart and the total
number of minutes between the two calculated. This is divided by the approximate value of period. Obviously the result should represent an integral number of orbits, so it is rounded up to the nearest integer and the total number of minutes
divided by that. This gives the orbital period. The procedure can be repeated regularly to keep the value of period accurate.

Descending orbits The equations given above are valid for the equator into the observer's hemisphere

WIRELESS WORLD DECEMBER 1980
longitude equation 4 must be modified before the first part of the equation mus be reversed. (ϕ^{\prime} will now be less than 90° if ϕ was greater than 90°. As the equation is being must be reversed due to the fact that the earth is rotating in the opposite direc'tion. The equation now becomes
$L_{\text {eq }}{ }^{\prime}=L G_{\text {obs }}+\cos ^{-1}\left\{\left[\cos \left(\frac{360 t}{P}\right)\right]\right.$
$\left.\div \cos L_{\text {obs }}\right\}+\frac{t}{4}$
This value of $L_{e q}$ ' is the equator crossinglongitude passing from the observer's hemisphere. To calculate the value of the
crossing-longitude half an orbit before 180° plus a correction for the rotation of the earth must be subtracted.
$L_{\text {eq }}-L_{\text {eq }}{ }^{\prime}-180^{\circ}-\frac{P^{\circ}}{8}$
This, together with the time, represents another reference orbit.
Source of errors
Several assumptions are made during the two main ones:

1. The satellite radiometer looks directly downwards, i.e. the scanning plane is at right-angles to the axis of motion.
2. The orbit is perfectly circular.
3. The orbit is perfectly circular. reasonably accurate indicating that the errors resulting from these assumptions are quite small. It is also assumed that the observer is not located very close to either involved with the measurement of time depend to a large extent on the user. If a suitable method is used, the contribution the total error is small

The two main areas of significant error lie in the identification of a selected point, its transfer to the atlas map and conversion
to latitude and longitude. The size of the mage has a large effect on the first of these, and the quality of the atlas an effect on the second. Both these errors will be
reduced with practice. In order to reduce errors generally it is best to use a point as near to the equator as possible.

Use of a computer

It is very much easier to calculate the result by means of a computer program. This routines on a mainframe computer, but it could easily be implemented on a microcomputer, using Basic. The compuer also makes the generation of longer looping program based upon parameters and reference orbits obtained from this method. If a computer is used, care must
be taken to prevent longitudes from being negative. This was achieved by using For-
tran-4 IF statements for results either side of zero longitude. All longitudes were expressed as degrees west.

Conclusions

The results achieved using this method have enabled orbit predictions to be held
better than half a minute for a.o.s. The equator crossing longitudes are used by an antenna tracking computer which has also proved most satisfactory. It has been found necessary to update the reference
orbit approximately once every two weeks, and the value of period every month. If a greater error could be tolerated, only occasional updating would be necessary.
Acknowledgement. I would like to thank Miss C. Thoburn of the Royal Greenwich observatory, Herstmonceux, for her ever this article.
this distortion, termed interface in
ermodulation, will be most prominent at low frequencies where the loudspeaker reactive load is largest.

Amplifier design rules to avoid

interface intermodulation

The output should provide a low open-loop output impedance to speaker reaction signal so that the need for a feedback-generated damping is minimized.
Heavy overall feedback should be applied with caution. - the susceptibility of the amplifier to by using a modified difference-tone method, where one of the signals is in-
jected to the input and one to the output of the amplifier. To create conservative worst-case test for this effect, the latter signal may be increased to equal in power
the rated output power of the amplifier.

This investigation was performed under a research grant from the Technicicl Research Centrer a r Fesearch
and und under partial support of Harman/Kardon, Inc. We are grateful to Eerp Leinonen for manny disccussions
during the early stages of this work, and Kari Niemi
 ted. Both are with the Technical Research Centesen of
Finland. Prof. J. . Robert Assley of the University of
Colorado, and Robert Cordell of Bell Laboratories are

 notably Leon Kuby and Robert Furst of Harmon In-
ternationa Industris, Inc. and Richard Heyser of the
NASA Jet Propulion Laboratory.

References - 2
References - $-\mathbf{2}$ Measurement of IIM in commercial power amplifiers,
Radio Gijuusus, 1979, p..1648 (in

 amplifiter-Ioudspeaker interface, 65th AES convention
1980, London, preprin 1608 Intermoduataion distor-
ion in ine

 termodulationsverzer rungen in dem Verstarker-
-Lausprecher-Kopplung,
Fpunkechnik,
pp.102-13.
continued from page 44 their distortion behaviour close to clipping. Although these questions would be of great interest, hey are not discussed as
trate the basic theory.
The analysis and measurements show

- a loudspeaker, being reactive by nature, is capable of storing much of the energy it receives from the amplifier.
to the amplifier output terminals the closed-loop output impedance of amplifier is normally very low, but the open-loop impedance may be several ohms. To damp the reflected signal, feedwithin the amplifier
- the signal in the forward path of the amplifier thus consists of two components; the original input signal and the loudspeaker reaction signal, order of magnitude.
non-linearities of the amplifier, generating intermodulation products between the two

CIRCOUTT IDEAS

Waveform gating with

 the 8038In Fig. (a), Tr_{1} to Tr_{4} form a unity gain
Voltage-follower which prevents oscilla-Voltage-follower which prevents oscilla-
tion by balancing the positive current source in the 8038 , and feeds C_{1} with an
tite equal but opposite current from Tr_{1} via D_{1}
and D_{2}. The voltage-follower is disabled and D_{2}. The voltage-follower is disabled
by a gating pulse which removes the bias to by a gating pulse which removes the bias to
Tr_{1} and allows its collector to rise about 0.7 V above the voltage on C_{1}. This reverse biases $\mathrm{D}_{1}, \mathrm{D}_{2}$ and allows normal operation

$$
\text { of the } 8038 \text {. }
$$

When the logic enables Tr_{1} at the next
positive transition of the 8038 square-wave positive transition of the 8038 square-wave
output, D_{1} and D_{2} are still reverse biased and waveform generation continues until the triangle waveform reaches the voltage set by VR_{1}. At this point D_{1} and D_{2} become forward biased and the oscillation
stops. In the single-cycle mode, the gating stops. In the single-cycle mode, the gating
signal produces a short pulse on its rising edge which allows one full cycle of oscillation. Fig. (b) shows a c.m.o.s gating cir-
cuit and Fig. (c) illustrates a faster t.t.1. version.
Norwich
Norfolk

F.e.t. tester

Because the pinch-off voltages of f.e.ts of the same type vary considerably, it is often
necessary to test them before use. This simple circuit reveals the bias required for a given current. Resistor R_{1} is chosen to
equal $0.6 / /$ so that the bipolar transistor equal $0.6 / I$ so that the bipolar transisto
provides sufficient current to produce the required bias across R_{2}, which is measured by a voltmeter. The value of R_{2} should be less than the reciprocal of the f.e.t's mutual conductance at zero bias, and for most
devices 150Ω is suitable. The meter does not need a high impedance, and for accurate matching, a d.v.m. can be used. F. N. H. Robinson

Time-base generator

Components IC_{1} and C form an integrator with time constants controlled by the range resistors. Schmitt trigger IC_{2} controls the discharge of C through IC_{3} attenuator and the
transistor. IC_{4} is a buffer with a gain control to change the outpur amplitude
H. A. Eassa

Cairo

Floppy disc system

explained in Table 6, two controller commands have to be altered, 1D63 to
write the complete track, and 1E47 to write the complete track, and 1E47 to
delete the attempt to verify the head position after the seek operation, as presumably the track is being re-formatted because
Re-formatting is accomplished by

Table 7. Sequence for a DRQ interrupt. Note that interrupts can be accepted during LD, SP, HL, in which case the HALT will not be executed, but instruc
tions up to and including LD, SP, HL are always executed unless NMI occurs.

(Mode 2 Interrupt) IN A,1D CPL LD (DE),A INC DE EI LD SP,HL HALT	$91 / 2 \mu \mathrm{~s}$ $5^{1 / 2} \mu \mathrm{~s}$ $2 \mu \mathrm{~s}$ $31 / 2 \mu \mathrm{~s}$ $3 \mu \mathrm{~s}$ $2 \mu \mathrm{~m}$ $3 \mu \mathrm{~s}$ $2 \mu \mathrm{~s}$ 2,	Data read in Data inverted to true Stored in memory Move to next location Enable interrupt Pull back SP Halt for interrupt
	301/2	

proceeding as with a standard W/rite operation, giving the start of the block as a source and dummy data, say 1,1 and 1 for the track, sector and number of sectors. write the track. After this, loas itself and write the track. After this has occured and
the head has released, the computer should be manually reset using the Reset key or, preferably, Control Z

Programmable power supply
 board. The overload latch then sets to zero the input voltage to the output amplifier
The voltage is maintained at zero until the overload condition is cleared and the reset command is received.
Maximum output voltage of the circuit is dependent on the transformer rating and transistor. The prototype used a 100 VA transformer rated at $40 \mathrm{~V} / 2 \mathrm{~A}$. However, with two decimal digits of programming, the potential output is 99 V with suitable modifications.
The current-limit sense amplifier is conventional and allows variation of the trip current with a preset potentiometer. A unusual feature of this circuit is the use of a t.t.1. i.c. in the power-down feedback $\stackrel{\text { loop. }}{\text { A w }}$
digital interface would perm further improvements in the power
supply. For example, if the d-toconverter is driven by optically coupled devices, and the overload-latch is also opti-cally-coupled, the analogue section of the system retains the features of remote pro gramming but does not need comple nearization feedback networks normally necessary
circuits.
A very accurate power supply with four significant digits of programming could incorporate digital correction of the outpu signal by monitoring the analogue output with the programmed voltage present at the d-to-a converter input. The difference between the two values is added to the binary signal to correct the analogue out put. Such a system prodes very accurat outputs with excellent long-term
stability

Tone filters for electronic organs

Part 2: design procedure and practical problems
by C. E. Pykett B.Sc., Ph.D.

This article derives frequency organ tones, whose acoustic spectra were given in part one. It completes the design procedure, discusses the number of filters needed per stop and the and various other practical points.

The frequency response of the required footh spectrum from the relevant organ pipe spectrum. In practice this merely means that the numbers in Table 2, representing the individual harmonic amplitudes, are subtracted one by one from the
corresponding numbers in Table 1. The resultant four series of values are presented in Table 3, and graphically in Fig. 5. (In all cases the frequency response is represented on a scale that does not indicate
absolute frequency but is normalized to the frequency of the first harmonic or fundamental of the original spectra. To implement a real filter circuit one needs to first convert the frequency scale back to true frequency values, which immediately begs chosen for the filter, a subject treated later.

Also shown in Fig. 5 by the full lines ar the frequency responses of four actual filtponses suggested by the discrete points on the four graphs. (The circuit diagrams of these filters are given in Fig. 6 and they are more fully discussed later.) It is, of course, permissible to draw the frequency res as the filter has a defined gain/loss at all frequencies in contrast to the experimentally derived points of Table 3, which exist at harmonic frequencies only. An addi-
tional feature in Fig. 5 is the presence of broken lines corresponding to Bode plots used in the filter design process. This is discussed later, but for the present a shor qualitative discussion of the form of these responses follows as this leads naturally
onto filter implementation. It is necessary that the reader is familiar with the amplitude versus frequency response of simple

Fig. 5. Filter frequency response curves for
the tones in Fig. 2. Dots represent values of the tones in Fig. 2. Dots represent values of frequencies as in Table 3. Full lines are measured frequency responses of actual
fitters, broken lines Responses calculated assuming a sawtooth driving waveform.

rava

filter sections and (where appropriate) their equivalent Bode plot representations and third-order passive RC networks, and parallel resonant (LC) sections.
The claribel flute filter is characterized by a rapid increase in attenuation for th
first six or seven harmonics. Fig 5 (a) after which the attenuation remains roughly constant at about 35 dB below the value at the fundamental frequency. After the 15 th harmonic no further experimental data are available. The nature of the experimental points in this diagram shows why
flutes are among the most difficult tones to emulate. It is difficult to discern a simple trend from the available information, though an interesting feature is that the attenuation at the first few even harmonics odd harmonic frequencies. This suggests that the flute stop in question consisted of

Table 3. Normalized frequency responses in αB of tone filters for fou drive waveform corresponding to Fig.
organ stop nam harmonic $\begin{gathered}\text { claribel } \\ \text { flute }\end{gathered} \begin{gathered}\text { open } \\ \text { diapason viol }\end{gathered} \begin{gathered}\text { corno } \\ \text { pean }\end{gathered}$

WIRELESS WORLD DECEMBER 1980 stopped pipes, though it was not possible onior of the organ. Whilst a stoppe construction is unusual for claribel flutes, his assumption enabled a filter response be chosen that was based on the first fol
or five odd harmonic frequencies even harmonics were ignored. This filter consisted of a third-order passive RC ne work whose breakpoint was the fundamen tal frequency. Driven with a sawtooth ulted though the effect when using square wave was not satisfactory. (This is at odds with the strong suggestion from the filter response that odd harmonics elative proportions of odd to even har monics are critical for flutes, and experi ments with other filter configurations in which particular harmonics were selectively reinforced confirmed this. The simple emulate the part of the frequency response suggested by frequencies above the tenth harmonic. Even though such high-orde tructure may be crucial to the productio a good flute tone as previousiy discussed, yielded subjectively good results.
Turning now to the open diapason, the esponse fits a second-order Bode plot ver nicely, with the break point occurring at requency equal to 2.6 times the fundafull curve) fits the experimental points well, with only a few reaching a maximum divergence of 6 dB . Subjectively this mple dapason rifer procaced entirel acceptable and realistic sounds that wer woofy. A complete diapason chorus, from 16-foot double diapason to a three-rank mixture, was built up using a total of 32 sch filters and the effect had somening o rus on a pipe organ.
The experimental points for the vio filter suggest a bandpass characteristic, nd they are again well approximated by he Bode plot illustrated in the diagram. to a $12 \mathrm{~dB} /$ octave fall, the transition beween the two being at the fifth harmonic of the fundamental. Such a filter has the rue response indicated by the full curve he subjective verdict on this filter wa for some tastes. This is possibly due to the fact that this filter was derived from Bonr's data ${ }^{2}$, in which measurements were ade in a free field with the microphon close to the pipe. In an organ, a viol rank and almost certainly inside a swell box (large box equipped with movable shutte 0 enable the volume to be varied Therefore significant high frequency tenuation would result, with the tone in the autitorium.
Finally, the cornopean data are again strongly suggestive of a bandpass charac ented using a parallel resonas circui

'(y) Cloribel flute 8 \qquad ib: Open diaposon
Design freauency \qquad

(b) Open diapason

(d) Corropean 8 '
Design treauency

262 Hz midale C
(c) Viol 8^{\prime}
Design trequency 31 Hz midole $D^{\# t}$
s of Fig. 5. Inductor in (d) can be realised
Fig. 6. Filter circuits giving
uned to the fifth harmonic with a Q of esponse, which rapidly falls above reso nance, a third-order RC filter was als sed breaking at the eighth harmonic. The easons for using this particular bandpass he viol are given in the next section. For the present the actual response is seen to fit he experimental values closely. The effec of this filter was a convincing bright reed tone, definitely typical of a cornopean or a romba or tuba. Again, a family of such filters was built with worthwhile results. The unique tone of an organ reed pipe seems, in part at least, to be due to an barm. etween the fift and tenth depending on the particular tone. After this frequenc the amplitude falls off rapidly; this falling haracteristic is reflected in the filter res ponse. It is therefore essential to copy the filter, as without the rapid attenuation bove resonance the effect is completely ynthetic and quite unlike the original
Hardware realisation
Filter response need not be matched racty to the calculated values at each armonic frequency of the driving wavefrm. These points originate from exper ental measurements in which a larg controllable, affect the results such un divergences of a few dB can be neglected rovided they are random rather tha Fliceably systematic.
Flue pipe tones can nearly always b ell approximated assive RC filter
-flutes generally need a third-order
lowpass system
diapasons generally need a second-
-strings generally need a bandpas
system.
Circuit examples of these types of filter ar
Reeds in Fig. 6(a), (b) and (c)
mated by implementing the asymmetrical bandpass characteristic previously deshump in this bandpass is significantly greater than unity for reeds, whereas for strings (which also require a bandpass) the Q tends to be less than this. Therefore, can be used for strings as noted above, a resonant circuit or its equivalent is usually necessary for reeds. If a parallel LC circuit is used, as in the example in Fig. 6(d), the rapid rolloff on the high frequency side of an additional passive RC network. In Fig. 6(d) this network is of third order.
The majority of organ tones are best derived from a sawtooth wave, or one that has both odd and even harmonics. However, there are some important exceptons where a waveform containing only he odd harmonics (e.g. a square wave) artial list of stops where odd harmonics predominate might have names such as topped diapason, lieblich gedackt, bour on (all stopped flue pipes), and clarinet, cylindrical resonators
These design guidelines just ive apple These design guidelines just given apply ones, the Bode plot of an appropriate passive network is first matched to the experimental points and then the correponding filter is implemented. This experience and judgement; for the firs xample turn to the open diapason fre quency response in Fig. 5(b). The Bode plot best suited to the experimental data appeared to be a second-order system in slope) followed by a line of slope -12 dB loctave. The breakpoint is the frequency a he point of intersection of the two line segments. The $-12 \mathrm{~dB} /$ /octave part of th esponse was drawn so that it fitted the possible as judged by eye, then the reakpoint was adjusted bearing in mind hat the actual response at this frequenc
breakpoint of 2.6 times the fundamental ponse of the filter is given by the full line in Fig. 5(b) and Fig. 6(b) gives the circuit. This corresponds to the particular form of
the Bode plot in that the two sections have the Bode plot in that the two sections have
the same time constant (RC product) and they are arranged such that they do not mutually load each other. (It is usually possible to avoid buffer amplifiers by choosing the component values to avoid
mutual interaction). The circuit was designed for a fundamental sawtooth frequency of 311 Hz , so that each section has a time constant of

$$
R C=\frac{10^{6}}{2 \pi \times 311 \times 2.6}
$$

where R is in kohm and C in nF . The question of how to choose the design frequency of the filter is deferred until later as it raises some important practical issues.
The flute filter of Fig. 6(a) was designed in exactly the same way, though in this case the frequency response data of Fig. 5 (a) offered less precise guidance as to the form that the Bode plot should take. A hird-order system was used, matched to stated previously. The three time constants were again equal and the three RC sections were again buffered. The breakpoint was chosen to be the funda370 Hz . There would have been little point in using a breakpoint lower in frequency than the fundamental; this would merely have resulted in greater overall insertion loss with little effect on the tone quality. For the viol frequency response, Fig.
5(c) there were two segments clearly indicated, forming a Bode plot with slopes $z 6 d B / o c t a v e$ and $-12 \mathrm{~dB} /$ octave. The breakpoint turned out to be at the fifth harmonic. This is a simple bandpass filter formed from three RC sections in which
one is highpass and the other two lowpass. The particularly simple form of the Bode plot means, again, that the time constants
are all equal and that the sections must not are all equal and that the sections must not interact. Such a circuit is shown in Fig.
6 (c) and was designed for optimum operation at 311 Hz .
tion at 311 Hz .
Reed tones generally require bandpass characteristics with Qs not less than 1.5 and often more, which implies the use of circuits such as LC resonant sections. The higher the Q, the more "reedy" the tone
and the smaller the frequency range over which the circuit is effective. $A Q$ in excess of three or four is seldom required for the imitation of organ reeds. The cornopean frequency response in Fig. 5(d) has a
clearly defined resonance peak at the fifth harmonic, and a Q of about 1.5 is implied by the locus of the experimental points below resonance. To achieve the rapid attenuation above resonance, an additional the eighth harmonic is also indicated. This result was obtained after a certain amount of juggling with ruler and pencil on the original graph points. The filter con-
structed used a resonant circuit with 2 structed used a resonant circuit with a Q of and a $-18 \mathrm{~dB} /$ octave rolloff instead of
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
 well as is indicated by Fig. 5(d). In the interests of simplicity it had been implied that the resonant circuit was con-
structed with a wound inductor. This was structed with a wound inductor. This was
not the case since an electronic inductor was synthesized using a simple circuit, was synthesized using a simple circuit,
Fig. 7. The advantages are that the filter can be readily adjusted until a subjectively optimum effect is produced; it is much
cheaper than its wound counterport cheaper than its wound counterpart, contor and a cheap operational amplifier; and it is much less bulky.
Design equations
Design equations are as follows:
$L=\frac{Q R_{2}}{2 \pi f}$

$$
-C=\frac{L}{R_{1} R_{2}}
$$

$$
C^{\prime}=\frac{1}{4 \pi^{2} f^{2} L}
$$ A single tone filter, implemented at one design frequency, will not produce the

same tonal effect across an entire keyboard which (in the case of five octaves) might represent a frequency range of $32: 1$. Yet there is evidence in favour of using single
filters when cost is paramount the single filters when cost is paramount: the single
filter approach often produces subjectively filter approach often produces subjectively
reasonable results. In my experience this rastement is true for flue pipe tones that
6. Linsley Hood, J.L. Low-noise, low-cost cassetce
deck .Wireless World May, June $\&$ August 1976
and Feb. 1978. design process. Such a course seems scarcely worthwhile when it is possible to

Fig. 8. Cornopean reed filter using synthesized inductance as alternative to
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and

UIRELESS WORLD DECEMBER 1980 are simulated using simple low-pass filters (flutes and diapasons), where an effective range of three or four octaves can be ob hese tones begin to sound unnaturally stringy in the bass and too characterless in he treble, and in addition there is an overall reduction in amplitude when going rom low to high frequencies. This la problem can be midigated by grading found in the keying system.

There are two reasons why a single lowpass filter has such a large effective frequency range. First, it is easy to show that waveform spectrum both approximate to designed to operate over a particular segment of the keyboard. The limiting extreme, of course, is to employ one filter advantages in spite of the enormous com ponent count. The advantages stem from | Inputs trom |
| :---: |
| semented |
| keying system |

Fig. 9. Method for combining the outputs of Fig. 9. Method for combining the outputs of
a number of filters corresponding to one
stop. R^{\prime} controls the regulation of the stop across the eyboard,
amplitude of the stop.
supplied with a sawtooth wave at the same amplitude as the existing one but at three imes the frequency, i.e. at the interval of a twelfth above the note being keyed. The quate results can be achieved using different filters for each half-octave; indeed even this is usually an overkill. I have built a classical instrument of speaking stops, all of which employ only four filters and
the result is most satisfactory, especially with regard to such features as the sound of reed choruses at the bass end of the keyboard. The method used to combine the outputs of the filters comprising one
stop is illustrated in Fig. 9. Each is termistop is illustrated in Fig. 9. Each is termi-
nated in a resistor \mathbf{R}^{\prime} that can be used to several frequencies are switched simultaneously for each note. The additional fly by providing more input tesister simply by providing more input resistors, as in
Fig. 10. This shows the claribel flute filter together with an additional input which is
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and

Fig. 10. Converting the claribel flute into a lieblich gedackt by
third harmonic.

Many organs use a single generator system from which all tones are derived. This means that all stops of the same ootage are fed with the same waveform when a given key is depressed, and the
various signals emerging from the tone filters are then usually electronically recombined before being amplified and fed to a loudspeaker system. Take care that filters do not introduce inadvertent phase shifts due to the indiscriminate use of
inverting amplifiers within the filter itself. Such amplifiers might have been used for buffering purposes. Without first designing the tone forming system as a whole
and taking account of detailed points such and taking account of detailed points such as this, the ability to add stops one to
another will be adversely affected. Buffers are therefore best implemented using noninverting amplifiers, for example, voltage followers. The problem of combining tone
colours is further considered below. The construction of analogue filter circuits for most purposes usually involves close-tolerance components, and the free use of resistors from the E24 range in the
tone filters illustrated in these articles might ingly thustrated in these articles might imply that the same applies in this
case. These values were used simply be-

0 a

\square
.
$\begin{array}{lll}\text { Le } \\ \text { where } f \text { is the resonant frequency } & \text { waveform spectrum both approximate to } & \text { nated in a resistor } R \text { that can be used to } \\ & \text { linear slopes, not necessarily numerically } & \text { regulate its amplitude. Judicious variation }\end{array}$ the ability to regulate the tone quality and

 . . y
poses resistors from the 5% E12 range should be adequate. Capacitors in active filters, e.g. the synthetic inductor circuits,
should be at least 5% but elsewhere 10% should prove satisfactory. The object is not to produce a highly precise scientific instrument but to reproduce musical effects in a context where 3 dB in amplitude
(around 30%) is fortunately of little significance.

Combining stops

Regardless of deliberately introduced phase inversion filters normally produce a
certain amount of phase shift, usually frequency dependent. With a common generator system, in which the same waveform is split into several paths through various filters before being recombined and ampliphasis or attenuation of particular harmonics in the final signal. This has the practical effect that the result of adaing stops will be the production of a composite sound that is not necessarily the subjectively expected
result of adding the individual tone colours. The effect is most noticeable for stops of the same footage, and if the problem is troublesome then various remedies can be used. The best technique is to have a multi-rank generator system in which
there are as many ranks as stops that are likely to be combined. The various ranks are not phase locked to each other but must run independently. Whilst there are various technical problems inherent in this approach, not to mention cost, the chorus
effect of the result can rival that of a pipe organ and it is worthwhile if economics allow. The other method, less effective but still expensive, is to retain a single generator system but only allow recombination of
the filter outputs to occur acoustically the filter outputs to occur acoustically
through the use of a multiplicity of sound channels. Electronic "chorus" can also be judiciously applied to each channel to enhance the effect.
The combining problem is sometimes exaggerated, and a cost-effective compro-
mise is obtainable at minimal expense simply by applying a few artistic guidelines when developing the specification (stop list) of a new instrument. In normal pipe organ registration, that is the art of select-
ing stops to achieve a particular tonal ing stops to achieve a particular tonal
effect, it is preferable to minimize the number of stops of the same footage that are used. Even with the pipe organ, which has the ultimate in chorus effects owing to its huge variety of non-synchronized tone
sources, it is inartistic to pile tone on tone when one or two carefully chosen stops would suffice. When major tonal build-ups are required, this should be achieved by adding stops of different footages, and exactly the same guidelines apply to an
electronic organ of whatever sort though particularly if it only has a common generator system. In this case, the addition of a 4 stop to an 8^{\prime} one introduces a new hartechnical sense, with half as many harmonics in the basic 8 ' tone as would be the case if a second 8^{\prime} stop had been added. The
resultant tone is much more realistic in genera. The only expense involved in fol erator rank has to be extended upward by the appropriate number of octaves to cater for the extra upperwork present in the stop list, and the keying system is also made correspondingly more complex.
It might be thought that adjustable filters can be used in the filter design process
to quickly arrive at a subjectively satisfactory result simply by twiddling knobs. A useful configuration, it might be argued, would be a resonance filter module as used in synthesizers in which the tuned fre-
quency and Q are independently variable through the use of state-variable techniques. This approach has been eschewed as it represents a return to the total empiricism that negates the design methodology outlined. If it is possible to calculate a
frequency response, then the starting point should be a filter that approximates this response in a reasonably cost-effective manner. This does not disallow small changes to the prototype circuit to secure a better result, but too much dabbing will
quickly lead the ear in a false direction that becomes all too obvious if an A-B comparison is subsequently attempted. If it is impossible to achieve a satisfactory simulation of the desired sound, then the
original experimental data should be suspected as being unreliable, and an attempt to obtain new data should be made. \square

iterature
 received

Intelligent v. ..us, namely the BH912 and
BH 920 are
the subiects of two new publications BHY20, are the subiects of two new publication
which are aviiable on reuest fy which are avalable on request from Burnt Hil
Electronics. They illustrate the terminals and provide data on operating features, together
with keyboard lay lats with keyboard layouts and dimensions etc.
Burnt Hill Electronics, Holder Rd, Aldershot. Burnt Hiil Electronics, H
Hampshire GU12 4RH.
A folder containing a selection of data sheets on analogut monoilitic i.cs has been sent to us by
Pascall. Anilou Sys Pascall. Analog Systems, who manufacture the
products described, seem to specialize in making devices witit "uut of the ordinaraity" specifica-
tions such as as an undio typically 0.0002% and a wide-band $0 p$-amp with ${ }^{1} 1.5 \mathrm{GHz}$ gain bandwidth product. A.splication notete are included on the sheers and some of the orher products avalable through this distributor
are described on the actual folder. Price ist and "shor-form" datal ist were also included in the

House, Gren
TW 16

Full data for the range of fixed frequency and tunable quadrature oscillators manufactured by Frequency Devices Inc. is avialale in cata-
logue form from their UK representatives, logue form from their UK represestatives,
Lyons Instruments Ldd A series of Lyons Instruments Ltd. A series of modular
power supplies is also described in the catalogue
 whicr is avalable free of charge from
nnstuments L Ldd, Hooddenon, Hers.
Twelve articles are included in volume eight of the series of Chromatography Newsieteres from Perkin- Elmer Ltd. These reguar publicaions
feature articles on advanced technology applica reature articles on advanced technology applica
tions in both liquid and gas chromatogranhy
 Perkin- EImer Ltd, Post Office Lane,
Beconsfied Beaconsfield, Bucks, at no cost by requesting
order number CHN-15.
Solidelelectolyte tantalum chip capacitors for
use in hybrid criruits are describad in in "E Engi. use in hybrid circuits are described in an "Engi-
neering Bullecin" received from Hy Com L . neering Bulleein" "received from Hy-comp Lud
This wwopage eaffer gives full datat oror the Type 194 Midget series and is availabof from Hy-
Comp Ltrd 7 Sield Rd Astherd Comp Lid, 7 Shield Rd, Ashord In
Esate, Ashford, Middx TW1S IAV.

Audio gain controls

 - correctionsIn Part 1 of this article by Peter Baxandall in the October issue, the figure shown as 2 in the $p .59$

footuote should be $\sqrt{2}$. In Fig. 16 , the secondary of the microphone input transformer should, of course, be connected to the control| grid of the valve. In Fig. 1 Icaption "Two small |
| :--- |
| gain controls" should read "Two simple gain- |

 read "Dotted dine show s. noise variation",
Fig. 6 caption should end $"-$ varying emiter Fig. 6 caption should end "- varying emitter
resistance and varying collector load resistesce". For "equivalent" in Fip. 8 caption read approximatele equivalen". The caption given
for Fig. 14 is, of course, equally applic bie to or Figig 14 is, of course, equally applicable to
nost of the other circuis!
The Fig. 15 caption mould read "Curves showing calculated per formance of Fig. 14 circuit for two values of
R_{b}. The simplified circuit diagram of the BBC Rb". The simpifited circuit diagram of the BBC
OBA9 microphone amplifier shown in Fig . 17

Details of Evershed \& Vignoles' stepping motors based on three different design prin-
ciples, namely permanent magnet, variable reciples, namely permanent magnet, variabie re-
luctance and hybrid types, are given in a sixpage brochure. specifications provided include
holding torque, maximum pullo-sut torque holding torque, maximum pull-out torque, no-
load pull-in rate, rotor inertia and physical dimensions. The company's range of unipolar RL and bipolar chopper drives are also described in
the brochure, copies of which are available from the brochure, oopies of which are available from
Evershed \& Vignoles Ltd, Acton Lane, ChisEvershed \& Vignoles Ltd,
wick, London $\mathbf{W 4} 4 \mathrm{HJ}$.
Commodore have provided us with a package which gives comprehensive information not only on their range of personal and business
computers but also computers but also on software, microcom-
puter training courses and seminars, and the
Pet users' puter training courses and seminars, and the
Pet users" club. One of two "newspapers" included was the first issue of Microcomputers in Schools and Colleges which, although obviously
Pet biased, should provide useful information to Pet biased, should provide useful information to
teachers and lecturers who are thinking of acquiring a computer for use as a teaching aid.
Commodore Information Centre, 360 Euston Rommodore Information Centre, 360 E
Rondon NW1 3BL, for details.

Take a leaf out of our book.

Or better still send for the complete works.

Our main illustration shows just one page from Feedback's new Test Instruments catalogue: a comprehensive guide to the ten test
instruments in the renowned ' 600 Series,' comprising function generator instriaments in the renowned and meries, comprising function generators and minstruments, together with another six instruments which also provide the kind of performance and reliability that is synonymous with the Feedback name.

All Feedback test instruments put an emphasis on high
performance and value for money, are rugged and reliable, and carry an unconditional two-year guarantee. Complete the coupon and this important new book is free for the asking.
Please send me my tree copy of the new Feedback Test Instruments Catalogue Please s
Name
Position
Position
Company

WW - 034 FOR FURTHER DETAUS

TOP QUALITY REBUILT TV TUBES

Rebuilt on the most modern equipment to original manufacturers' specifications

Developments in air traffic control

Royal Signals and Radar Establishment, looks ten years ahead

An expected huge increase in the number of aircraft using UK airports and airspace (between 50% and 100% over the next two decades) would overload existing air traffic control equipment and procedures to an impossible degree, causing greatly in-
creased delays in handling aircraft and consequent increases in fuel consumption and engine hours. The kind of display a controller uses means that he needs to carry some kind of mental picture of the many aircraft and attempt to predict the situation as far ahead as possible. Currently, two to three minutes is as far as he can go.
Since the late 1960s, the Royal Signals and Radar Establishment at Malvern has
been working on several projects to alleviate the pressure on controllers. On behalf of the Civil Aviation Authority, scientists at RSRE have evolved a system known as ADSEL, which is Address-Selective vel ideas on ways to avoid aircraft being inadvertently directed to fly too close to each other, and on methods of smoothing out the flow of traffic on arrival'at and departure from airports.

ADSEL
For many years, secondary surveillance radar has been the mainstay of air traffic Its shortcomings have been
accepted in the past, but a growth in the number of aircraft may make it unacceptive. ADSEL is suggested as an alternative.

Secondary radar relies on the aircraft under control carrying a transponder, which receives pulses from the ground a eam, and immediately responds with eries of pulses at 1090 MHz to form a 12 bit code for identification purposes. (In reflected from the aircraft which, incidentally, necessitates a much more powerful ground transmitter.) During the time the aircraft is in the beam, it receives and Rangonds is easily measured, since it corresponds to the time taken for the aircraft's response to be received, or the distance from the centre of the controller's plan osition indicator (p.p.1.) tube to Bearing is more difficult, since the group of responses is as wide as the beam, and is undertaken by a computer plot extractor, which attempts to find the 'centre of grav, tech of the group by a sliding-windo. In a perfect set of replies the centre would be aligned with the aircraft and would correspond to the bearing, but missed responses would mean that the plot extractor would determine a false 'c.of.g. the imperfect set as two aircraft.

Missed responses, perhaps due to the aircraft banking and obscuring its aerial or rying to reply to two ground stations and not succeeding with either, are not the only problem. If two aircraft are on the same slant range from the transmitter, their groups of replies overlap, rendering them unreadable, or 'garbled'. There is also the condition known as 'fruit', which is the reception at the ground station of
replies to interrogation by other transmitters. These are not synchronous and are not, therefore, as serious a fault as garbled replies but, nevertheless, constitute a lowering in readability of the display.
ADSEL, which is being developed in ADSEL, which is being developed in system, called Discrete-Address Beacon System (DABS) because the Americans refer to s.s.r. as 'beacon', avoids most of the above trouble by selecting the aircraft the controller wishes to respond. In orditually three, but that is irrelevant to this discussion) all aircraft being thereby commanded to respond with their codes. In contrast, after first interrogating all aircraft (all-call), ADSEL's computer deterscan and transmits a uniquely coded interrogation when it is next in the beam, ensuring that only one replies, after which all-call is locked out. If a subsequent reply
is lost, the interrogator reverts to the all- S. with a monopulse receiver and aerial and ADSEL. ADSEL suffers no misses due to garbling and the monopulse technique s.s.r. with a monopulse receiver and aerial and ADEL. ADSEL suffers no misses due to garbling and
used in ADSEL produces a greatly increased bearing accuracy. The track of 4431 is shown idealized.

call mode. Garble is thereby avoided and,
since only a single reply is received per since only a single reply is received per
scan for each aircraft, the number of redundant responses on the display is much reduced. Up to four repeat interrogations are transmitted in the event of a missed response.
The interrogation and reply include
message bits, which could be used to pass instructions and the transponder to send information on airspeed, rate of turn, air temperature, etc. Interrogations carry a
24-bit parity/address field, which ensures a very low probility of undetected error in the presence of s.s.r. interference. To complete the set of data, the target's bearing must be determined using the single reply which, since the bearing of the pending on the width of the transmitted beam, dictates on extremely narrow beam. A technique known as monopulse is the answer here. Instead of a single transmitter aerial, a split type is used in an interfero-
metric configuration. As the beam tracks across the target, its return signals at the two halves of the aerial vary in phase; only when the aircraft is exactly on the boresight (centreline) are the two signals exactly in phase. On reception, both halves
of the aerial are used, in such a way that sum and difference signals are combined. Separate, logarithmic i.f. amplifiers are followed by a circuit which subtracts the log. sum from the log. difference. Since the ratio of the two is the same at any
bearing, the video amplitude is the same at all ranges. The position of any aircraft within the beam can be measured to an accuracy of 5 minutes of arc.
The increased bearing-determ
The increased bearing-determination ac-
curacy of the monopulse technique means that the track of an aizcraft is not a somewhat irregular succession of returns on the controller's screen, but a smoothed-out, almost perfectly regular train of dots. (The not the 'raw' response, but a computermanipulated symbol composed of a dot with the aircraft's identification and height.) Indeed, the CAA and RSRE take the view that the use of monopulse alone enough to cope with expected traffic increases until 1990.

ICR

The current jargon for the process of using computer to stop aircraft hitting each other is Interactive Conflict Resolution
(ICR). The use of a computer to generate the annotated dots on the controller's screen is being taken further by RSRE to predict the future by up to 15 minutes. He will be provided with a 'rolling-ball' control to allow him to advance the state of
play and to see which aircraft are likely to play and to see which aircratt are likely to
come into a state of conflict if they are not given alternative instructions. A 'menu' of possible changes in flight plan is displayed on the screen, the ideal being to choose one
which disturbs the pilot's chosen flight which disturbs the pilot's chosen flight.
profile by the smallest amount, since large changes in speed or height consume extra fuel and wear engines. The controller can 'try out' any of the possible changes and
the computer will indicate whether th atteration would resolve the conflict. In computer indicates "no conflict for this aircraft", whereupon he returns to rea time and instructs the pilot accordingly.
The computer will also warn automatically The computer will also w.
of impending conflicts.

Terminal control

Computers and v.d.u.s are also of use in the scheduling of aircraft on the ground, using data from other a.t.c. centres to en-
sure that flights are not allowed to take off sure that flights are not allowed to take off
if, by doing so at that particular time, they if, by doing so at that particular time, the
are likely to arrive at a 'pressure point' (a) congested sector of airspace) at the same time as another. The computer shows all such aircraft at the correct times at each pressure point, the display changing min-
ute by minute, and allows the controller to ute by minute, and allows the controller to
determine when a flight can be allowed to leave without possible conflict en route.
RSRE and CAA are at pains to point out that the work described is in the experiseveral sets of equipment having been evaluated successfully, but even so, it will not be in service for two or three years, chiefly for economic reasons - it requires
aircraft to carry updated transponders and ground stations to instal new interrogators. Re-equipment will take time and, since a.t.c. is international, ICAO will need to agree ADSEL/DABS before it can be used although it is compatible with s.s.r. and
can be introduced gradually. ICR is in the early stages and may not be in service for ten years, although equipment working in a shorter time frame may be introduced sooner than this.
The ICR system, and other applications of computers to activities which involve
safety, are responsible for a certain amount of psychological questioning. Some controllers who have used ICR in simulations of actual air activity have noticed a tendency in themselves to rely rather too
much on the computer. If it indicates no conflicts', they find themselves a little too ready to believe it: they do not care for the feeling they have of losing part of their control of the situation. The University of Aston and the RAF Institute of Aviation
Medicine are working with CAA and RSRE to investigate the effects this kind electronic 'assistance' can have on people. P.R.D.

WIRELESS WORID DECEMBER 198

IN OUR NEXT ISSUE

Microprocessor

 trainerDesigned to familiarize the complete beginner with microprocessors, this small unit with hex keyboard and six-digit display nevertheless has enough facilities to be come a useful tool later on The circuitry contains 9 i.cs on storage of 4 K bytes o e.p.r.o.m. and over 1 Kbyte o r.a.m.

Off-air

frequency reference
This instrument provides a 10 MHz signal phase locked to the BBC's 200 kHz Radio 4 Droitwich transmission. Modifications are available to allow for the eventual change of the
transmission to 198 kHz . The transmission to 198 kHz . The reference comes from a 10MHz crystal oscilla from the via a varicap diode from the
error signal in a phase locked loop.

Multiplex
 keying for organs

A technique for flexible control of pipe or electronic organs through time-division eliminate a lot of the drudgery of repetitive wiring but also allows use of hitherto imprac tical features in small organs such as mixture stops, transposition and pizzicato effects.
On sale 17 December

Test your knowledge

Multiple-choice quiz for students and circuit designers by R. W. Ellingham and B. L. Hart North East London Polytechnic

WIRELESS WORLD DECEMBER 1980
(c) $\frac{1}{(1+\alpha)}$
(d) $\frac{\alpha l}{2}$
(e) $\frac{2 \alpha \mid}{(\alpha+2)}$.

12. The amplifier shown has a voltage gain $A_{v}=V_{0} / V_{i}=9 \angle 180^{\circ}$. c_{i}, in pF , is
(a) 20 in
(b) 65
(c) 100
(d) 105
(e) 110.
13. An amplifier of nominal gain $A=1000$ has negative feed-
back applied so that the gain with feedback A^{\prime} has a nominal
value of 100 . The feedback is value of 100 . The feedback is
constant. If A increases to 1500 ,
A^{\prime} is
(a) 103.4
(b) 105
(c) 125
(d) 133.3
(d) 133.3
(e) 150 .
14. An amplifier consists of three identical stages in cas-
cade. Each stage has a voltage gain G at any frequency $f(\mathrm{MHz})$

$$
G=-\frac{10}{1+\mathrm{j} 10 \mathrm{f}}
$$

A real positive fraction β of the input circuit to reduce the overall gain at low frequencies. vide a gain margin of to pro(a) 0.001
(b) 0.002 (b) 0.002
(c) 0.004
(d) 0.008
(d) 0.018

15. The frequency response 15. The frequency response of
each of three cascaded amplifier stages is shown. The
asymptotes to the slopes increase or decrease 6 slopes increase or decrease 6
dB/octave and each stage introduces a phase inversion at the (real positive feedback fraction) introduced. As the feedback解
(b) $\frac{1}{2}$ creased the three-stage ampli- 18. In the basic circuit of
creased will
(a) remain unconditionally
(b) oscillate at a frequency f
(c) oscillate at a frequency
(d) oscillate at a frequency
(e) oscillate at freq less than and greater
than f_{1}

16. Assuming each of the operational amplifiers to be
ideal, the ratio of the incremental voltages, V_{2} / V_{1}, in the circuit arrangement shown is
(a) +54 (a) +54
(b) +45
(c) -45
(d) -50
(e) -54

17. The operational amplifier in
the circuit arrangement shown the circuit a ar
is ideal and

$$
\frac{C_{2}}{C_{1}}>\frac{R_{1}}{R_{2}}
$$

The frequency response

$$
\left|A_{v}\right|=\left|\frac{v_{0}}{v_{i}}(j \omega)\right|
$$

21. If $v_{1}=1 \mathrm{mv}$ and $v_{2}=0$ the in mV , is approximately
$\begin{array}{rrr}\text { (a) } & 0 \\ \text { (b) } & 80 \\ \text { (c) } & 80 \\ \text { (d) } & 160\end{array}$
22. An emitter-coupled ampli-
fier has a differential gain magfier has a differential gain mag-
nitude of 1000 and a common-
mode mode rejection ratio of 100 For
input voltages of 1.1 mV and 0.9 nput voltages of 1.1 mV and 0.9
mV a possible value for the magnitude of the differential
output voltage, in mV , is
(a) 200
(b) 210
(c) 220
(a) 200
(b) 210
(c) 220
(d) 400
(d) 420

24. For the transistor used in
the single-stage narrow-band the single-stage narrow
tuned amplifier shown
$y_{11}=(0.6+\mathrm{j} 7.2) \mathrm{mS} \quad y_{12}=\mathrm{j} 0.2 \mathrm{~ms}$. The coil is tapped at $2 n_{1}=n_{2}$
turns. For neutralization of the stage the value of the admit-

$\begin{array}{cc}\text { (a) } & 0.6-\mathrm{j} \\ \text { (b) } & \mathrm{jo.1} \\ \text { (c) } & \text { jo. } \\ \text { (d) } & \mathrm{jo.} \\ \text { (e) } & -\mathrm{io.4} \\ \text { (} \\ \text { (}\end{array}$

26. In the circuit arrangement doubled, the capacitance of C is halved and the temperature of
both com changed. Thernents is unnoise voltage developed acros (a) increase by a factor of (c) not change (d) decrease by a factor of 2
(e) decrease by a factor of 27. An amplifier is matched to a
signal source of purely resistive

WIRELESS WORLD DECEMBER 1980

Designing with microprocessors

6 - Illustrating a test-and-skip system

by D. Zissos and Laurelle Valan
Department of Computer Science, University of Calgary, Canada

Abstract

The previous article in the October issue described step-by-step procedures for the design and implementation of microprocessorbased systems using the test-andskip mode. The authors now go on to llustrate these steps by means of a peration. The implementation assumes either the Intel 8080 or Motorola 6800 microprocessor.

The problem chosen for illustration is to design and implement a test-and-skip system that would allow the programmer to produce a hard copy of data, which is The problem requires the use of an action/status printer and either the Intel 8080 or the Motorola 6800 to implement the design. Solution Our first three design steps are independent of the microprocessor, and therefore are common to both solutions. Step 1: aim of the design. The aim of the design is to expose the inexperienced eader to uncomplicated procedures for designing and implementing microprocess-r-based systems using the test-and-skip mode.

[^0]Fig. 3. Write data in memory or peripherals - M6800

WIRELESS WORLD DECEMBER 1980 Step 2: device characteristics. The termiin Fig. 6 of Part 5 in the October issue. Step 3: system design. The block diagram of our general solution was shown in Fig. 7 in the October issue. Its step-by-step operation is flowchartes here in Fig. shall use index addressing to retrieve each character from memory. Addressing modes have been discussed in Part 3 in the August issue.

6800 Solution

 Step 4: hardware design. The i/o signalsof the Motorola 6800 are shown in Figs. 2 and 3. Reference to these figures shows that our In signal in Fig. 7, October issue, is generated by Anding VMA and R/W, the outputs of pins 5 and 34 of the 680 ,
chip. Similarly our Out signal is generated by Anding VMA with the inverted form of R/W. Note that line R/W is high during a read operation and low during a write operation. The interface hardware consist ing of two And gates and an inverter Shown in Fig. 4.
ming model is shown in Fig. 5. Memory location 10 on page 20 is used as a counter, same page.

By direct reference to our programmin model in Fig. 5 and to the M6800 instruc tion set, reproduced in the previous art cle, we derive the hex listing of our test-
and-skip software - see Table 1.

8080 Solution

Step 4: hardware design. The i/o signals of the Intel 8080 are shown in Fig. Reference to this figure shows that our In and Out signals in Fig. 7 of the October issue are generated by Anding INP with DBIN and WR with OUT. The interface hardware consisting of two And gates and
an inverter is shown in Fig. 7 here. Note the similarity between the 8080 and the 6800 hardware implementations. The almost-identical nature of our solutions applies to all present-day microproas we shall be demonstrating in future articles.
Step 5: software design. Our programming model in the case of the Intel 8080 is shown in Fig. 8 Microprocessor register C counter. The first byte is stored in line 40 of page 20 in memory.
By direct reference to our programming model in Fig. 8 and to the Intel 8080 in struction set (shown in Table 2), we derive
the hex listing of our test-and-skip software. It is shown in Table 3.

The next article will deal with waitgo systems.

	Hex address	Hex listing	Mnemonics	Comments
L2:	$\begin{array}{r} 1000 \\ 01 \\ 02 \end{array}$	$\begin{aligned} & 21 \\ & 40 \\ & 20 \end{aligned}$	LXI HL	Set memory pointer to line 40 on page 20 - location of the first byte to be printed
	$\begin{aligned} & 03 \\ & 04 \end{aligned}$	OE	mVI C	Load register C with block length (n)
	$\begin{aligned} & 05 \\ & 06 \\ & 07 \end{aligned}$	$\begin{aligned} & \text { CA } \\ & 16 \\ & 10 \end{aligned}$	JNZ	Jump to L1 if $\mathrm{n}=0$
	$\begin{aligned} & 08 \\ & 09 \end{aligned}$	$\begin{aligned} & \text { DB } \\ & 60 \end{aligned}$	IN	Read printer status
	0A	07	RLC	Rotate left through carry
	$\begin{aligned} & O B \\ & O C \\ & \text { OD } \end{aligned}$	$\begin{aligned} & \mathrm{D} 2 \\ & 08 \\ & 10 \end{aligned}$	Jc	Jump to L2 of carry flag (printer not ready) is set
	OE	7E	mov, A, M	Move into A next byte to be printed
	$\begin{aligned} & \text { OF } \\ & 10 \end{aligned}$	$\begin{aligned} & \text { D3 } \\ & 61 \end{aligned}$	OUT	PRINT
	11	23	INX HL	Point to next byte in the block
	12	OD	DCR C	Decrement byte count (held in C)
	$\begin{aligned} & 13 \\ & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { C3 } \\ & 08 \\ & 10 \end{aligned}$	JMP	Jump to L2
L1:	16	76	HLT	Stop

Fig. 7. Interface hardware of the PRINT problem using test-and-skip and the intel
8080.

Fig. 8. Programming model for the PRINT problem using the Intel 8080.

Floppy disc system for the scientific computer - 2

Interfacing a disc drive to the controller by J. H. Adams, B.Sc., M.Sc.

This interface has been designed to operate with the Data Recording Equipment model 7100 8in disc drive but should be easily adapted to suit others. The main advantage of an 8in torage capacity, 77 tracks of $3^{1 / 4} / 4$ bytes each using the IBM format escribed in part one, compared with 35 tracks of $21 / 4 / 4$ bytes each. The disadvantage is greater cost. This drive is matched to the floppy-dise controller, and illustrates the salient points to check when considering other drives.
Whichever drive is used, the length of the cable, flat or twisted pairs, between the short as is reasonably must be kept as separate from the power cables. Each power cable should have its own return and there must be a good connection of the computer.
When considering the signals to and from the drive, their polarity and timing must be examined. Most drives use the active-low principle for their inputs and outputs, i.e. a true state is logical zero
(represented by $0 \leqslant \mathrm{~V} \leqslant 0.4 \mathrm{~V}$) and a false input is logical 1 (represented by $2.5 \mathrm{~V}<\mathrm{V}<5.25 \mathrm{~V}$). Open collector drivers are generally used for outputs, and low value pull-up resistors on the inputs
provide a full 5 V swing and keep the line impedance down, both of which improve noise immunity. One implication of this arrangement is that, to pull a line to zero, he driving device will need to sink the current supplied by the receiving gate and
by the pull-up resistor, typically 40 mA . For a logical 1 , no current is required from the driving device. The controller i.c. signals are mostly active-high, so inverters are used as receivers on all inputs except IP ndex 2200 pull-up resistors are used with high current-sinking, inverting, opencollector drivers on the five active outputs. If a drive with some active-high inputs is used, the equivalent non-inverting buffers,
7407 , or pairs of 7406 in series must be 7407 , or pairs of 7406 in series must be
used. Note that ordinary t.t.l. is used for driving the interface cable because the L and LS series do not have the required current-sinking capacity. Table 3 gives drive, the 7100 and the WDil7.71 controller.
be

When used with an 8 in unit, the Di 77 must be clocked at 2 MHz , whilst with a $51 / 4$ in disc 1 MHz is used. This is necessary to meet the standard data rates doubling of all pulse timings for the i.c. when used with the smaller disc. There are the application of power and selection of the drive, but these can be allowed for in the programming of the computer.

Stepping time
Most drives offer the option of keeping the This speeds operations by eliminating head-loading delay, but does increase wear on the head and disc. In this operating system, the head is only loaded when
necessary which is usually after it has stepped to the track required. Settling time is irrelevant if it is less than the head loading time. The interval between stepping pulses is programmable by the bottom two bits of the Step instruction
byte as described on page four of the data sheet. With the 7100 drive the fastest $(6 \mathrm{~ms})$ rate can be used, whereas with the $51 / 4$ in unit, the drive can only just keep up with the slowest stepping rate. Stepping
rate is probably the most critical timing rate is probably the most critical timing
factor because if a drive cannot step as fast as the controller's slowest rate, the two are virtually incompatible.

Stepping pulse

 Virtually all drives can step on the pulse exception found by the author is an obsolete version of the 7100 . As this unitTable 3. Timing information for disc drivers Table 3. Timing info
and the controller.
may still be available, the interface has been designed to operate with it and the The obsolete 7100 is most easily recognised by the absence of three d.i.1. sockets and header plugs next to the edge
connector on the p.c.b., and the presence of two power resistors and three power transistors instead of one resistor and four transistors near the opposite corner to the edge connector. To allow compatibility, a monos
10

Head-loading time
Ten milliseconds after the HLD (Head Load) output of the controller becomes
active (20 ms for the $51 / 4 \mathrm{in}$ disc), the HLT (Head loaded test) input is sampled and when it is low the controller proceeds. If the combined loading and settling time for
the head is less than 10 ms , this input can the head is less than 10 ms , this input can provide a head-loaded and ready signal, this can be connected to HLT. If neither is true, as it is for both of these drives, HLD should trigger a monostable to produce the
necessary delay before HLT becomes low. Because most drives will need this monostable if they are to be used with the head normally un-loaded, it is important to establish the total delay before the head is ready for use, i.e. the loading and settling
time. Note that one value cannot be inferred from the other by comparing the stepping rate figures for the two drives.

Drive options
Most drives offer wiring options, and in this system one for direct control of head loading by the controller is used. To select this option on the current model, remove
the link joining pins 13 and 14 on plug PP2 (the middle one of three referred to earlier)

	51/4in drive	WD1771 @ 1 MHz	DRE 7100 8in drive	WD1771 @ 2MHz
Track to track stepping + settling times	$40+10 \mathrm{~ms}$	programmable to 12,20 or 40 ms	$4+14 \mathrm{~ms}$	programmable to 6,10 or 20 ms
Stepping pulse width	$1 \mu \mathrm{~s} \mathrm{~min}$.	8us	600 ns - $10 \mu \mathrm{~s}$ on older units min.)	4us
Head load and settling time	75ms	HLT sampled after 20 ms , therefore monostable is required	30 ms	HLT sampled after 10 ms , therefore monostable is required

System software
The software in table 4 is not a full disc operating system, but it illustrates the basic functions required to position th head, read and write records of any length
from 128 bytes to 256 K bytes with error checking, and to re-format corrupted tracks. With the drive and interface connected to the computer, move the head thwards the centre of the drive by turning the stepping motor by hand. Apply mains computer. Put a dise into the unit and close the door. If the system is working, the head should quickly step to the delermost track 00 because the charging delay, caused by the RC network on pin 19
of the controller i.c. holds that pin (master reset) momentarily low in a similar way to the circuit used on the Z80. One of the actions which takes place during the resetting sequence is a Restore command, doesn't, check that the wiring is correct. If it steps out but does not stop, check that the track 00 line from the drive to the controller functions. With the software loaded, RUN IDO space. In response to the prompts
DESTINATION: TRACK: SECTOR: NUMBER OF SECTORS: type 820040 space 0 space 8 space respectively. The head should move in to track 40 and load 8 sectors (1 Kbyte) of data from the disc,
starting with sector 0 to computer starting with sector 0 to computer
locations 8200 to 85 FF , i.e. onto the v.d.u. With the IBM formatted disc, these should appear as percentage or proportional symbols.
At the end of the read, which should take less than one second, the head should
release from the disc and READY occur release from the disc and READY occur attempt to re-read the particular sector up to twenty times. A corruption should be evident by rubbish appearing on the
v.d.u., the controller recognises it by computing the CRC from a permutation of the data from the sector and comparing it with the pre-recorded CRC. Each sector takes up two lines on the v.d.u. If the corruption begins in a line and keep
changing, the data is corrupted. If the reading process seems to stop at the end of a line, the controller is having trouble recognising the Ident Field for the track or sector and, therefore, the track needs to be re-formatted (described later). With a
undamaged disc most reads are successful first time, but if the operation fails for the 20 times that it is attempted, the message ERROR AT TRACK XXX SECTOR XXXX appears. To force an error into the

IDe 0
$\begin{aligned} & 1028 \\ & 1038 \\ & 1 D 48\end{aligned}$
$\begin{aligned} & 1 D 48 \\ & 1 D 58 \\ & 1\end{aligned}$
$\begin{aligned} & \text { 1D9 } \\ & \text { 1D } \\ & \text { IDB }\end{aligned}$
$\begin{aligned} & \text { 1DBE } \\ & \text { 1DCE } \\ & \text { 1DDe }\end{aligned}$
$\begin{aligned} & 1 E 18 \\ & 1 E 28\end{aligned}$
$\begin{aligned} & 1 E 3 \\ & 1 E 4 \\ & 1 E 5\end{aligned}$
$\begin{aligned} & 1 E 50 \\ & 1 E \in 6 \\ & 1 E 76\end{aligned}$

1DED
1070
$\begin{array}{ll}\text { IDDe } & 23 \\ \text { IDE } & 23 \\ \text { 1DF } & 72\end{array}$
1DF 8
1EE
IE18
I
$1 E 78$
$1 E 86$
$1 E 90$
$1 E 90$
l'EAC
$1 E B K$
IEBG
1EC
IED
IEE
1EFE $\& 5$
Table 4. System

Table 5. Software subroutines

1DF9 Used in READ and WRITE to convert the typed in track number, sector number and to 6 respectively using the index register. These bytes are then sent to the controler, which is then told to step into this track and, by reading an indent field, verify that the head is over the correct track. Also, by reading the CRC, verifies that the track number has been correctly read and does not match the track register's
contents by chance. The data destination/source address is transferred from HL to DE and, by clearing HL and adding SP to it, the contents of the stack pointer register are loaded into HL.
$1 E 57$ Used in READ and WRITE. On entering this routine, the A register holds a byte which is dumped at 1DF3 to be used by a DRQ interrupt as the lower part of the
interrupt routine address (1DE7 for READ, 1D71 for WRITE, 1DF5 for VERIFY interupt routine address
WRITE). 20_{10} is loaded into B and DE , which holds the destination/source address, is saved on the computer stack in case a re-read or -write is necessary. The controller is then instructed to read a sector of data to that and succeeding locations. After the and sector. If no faults have occurred, execution jumps to 1 E9B where the saved D and sector. If no faults have occurred, execution jumps to 1E9B where the saved DE
is discarded from the stack into BC and, using indexed operations, the number o sectors byte is decremented. If this operation sets the byte to zero, an exit is made because the READ is complete. Otherwise, the sector and, if necessary, the trac
number are updated for the next sector to be read, the information is sent to the controller registers and another sector is read. If the operation to read the secto fails, the starting address of the data is popped back off the stack and B is decre mented. If this does not reduce it to zero, a re-read is attempted and arter

1EC6 Loads decimal data from the keyboard and converts it to binary in register C
1EDA Displays the contents of A, converted to decimal, on the v.d.u.
1DE7 The READ interrupt routine, called by a $\overline{\mathrm{DRO}}$. This routine transfers the byte in the pointed to by $D E$, and increments $D E$ ready for the next byte. The interrupt system in the $Z 80$ is automatically disabled when an interrupt is accepted so that the $Z 80$ can service the interrupting device without interference from the interrupting de vice itself. Standard service routines usually finish with a re-enabling of the in not re-enable the interrupt until it has executed the instruction after the enabling instruction F3. This service routine does not have a return, but it uses this one protected instruction after the F3, F9, to load HL into the stack pointer, SP, register
FE
$k F$
$C D$ 18
CD
FB
18.
 stack and SP' decreased by two, as is normal at the calling of any subroutine. byere in the subroutine is the HL and SP are the same and F9 has no effect. The next byte in the subroutine is a HALT, at which the 280 stops and waits for the second
DRZ which, when it arrives, jumps the execution back to the start of the subroutine
and pushes another return address onto the stack. When the data byte is read and and pushes another return address onto the stack. When the data byte is read and
the $F 9$ is executed, $S P$, which decremented when the second interrupt was accepted, is pulled back to where it was before the interrupt occurred. Therefore this, and all future $\overline{D R Q s}$ are demoted from calls to being, effectively, simple jumps
to 1DE7. Whilst each return address is written on top of the last as the $\overline{\text { DROs }}$ progress, the first call from the main program remains unaltered one position Prorther up the stack. When all 128 DRQs have passed and the SP has been pulled
back again the NTRO inter back again, the NTRQ interrupt occurs and this, having a conventional return at its end, returns execution to the first popped address, i.e. where the original "read a
sector" command was given. This forms a neat method of writing the main program because it makes the controller appear as part of the main processor and, more important, it saves time. There are only 32us during which data can be
transferred from the controller to the memory, and the Z80 made ready for the next interrupt. If the sequence servicing the controller takes longer than this, data will be lost and the controller will halt the reading sequence. A conventional return takes
$51 / 2 \mu s$ and the jump from this returning point to the "wait for a $\overline{\text { DRO" }}$ " point requires a $51 / 2 \mu s$ and the jump from this returning point to the "wait for a $\overline{\text { DRQ" point requires a }}$
further 6 us. The single purpose, but just within the $32 \mu \mathrm{~s}$ limit.
The WRITE interrupt routine called by $\overline{\mathrm{DRO}}$. This is similar to the previous routine in
that the progress of the stack pointer is arrested by repetitive that the progress. of the stack pointer is arrested by repetitive loading from HL . This
routine differs because the first two DRO-pushed addresses are saved, 1068 and routine difters because the first two
1079 respectively. When the 128 DROs have occurred, , NTRQ causes a jump to the status reading routine after which the return occurs to $1 \mathrm{D79}$ at which a jump pushes execution on the 1068 . Here the other DRQ is popped off the stack and a new vector
byte, $F 5$, is placed into the A register ready for the third type of $\overline{D R O}$. When checking a written sector, $1 E 57$ is used as the reading subroutine. Becau
1DF5 When checking a written sector, 1557 is used as the reading subroutine. Because
we are interested in the CRC and not the data on the disc, 1DF5 acts like 1DE7 when we are interested in the CRC and not the data on the disc,
handling DROs. except that it makes no actempt to store the unwanted data and just
waits for the iNTRO. When this arrives, 1DF5 returns to the point in the main program where the CRC can be checked to see if the track just written has verified
itself.
reading any sector track 77 , which does not exist! Note that spaces are required
fter decimal information - the track, sector and number of sectors, but not after the hexadecimal destination address. ID 00 , which should cause the unloaded head to return to track 00 . Next type WRITE space, and in response to SOURCE type 0000, for TRACK: 40 space, for SECTOR: 0 space, and for
NUMBER OF SECTORS 32 space. The head should move in and write to track 40 , step to track 41 and continue writing, so that the first 26 sectors fill track 40 and the

Table 6. Floppy-disc controller commands used. The asterisked addresses are where
modifications to the software are made odifications to the software
when a track is re-formatted.
inal 6 fill sectors 0 to 5 track 41. The write operation is slower because after each sector is written it is read back and checked for errors. As before, up to 20 attempts are made before the operation terminates and the ERROR message
occurs. Nevertheless, it should only take a few seconds to record the entire 4 K monitor.
Explanations of the software subroutines are given in Table 5. To follow the main program 1D00 to 1DFC, a
disassembler such as the one given in a recent computer newsletter is useful. The interrupt mode 2 is set and the I register, which is used (as described in part one) to form the top half of the interrupt
addresses, is set at 1 D and the IX index register is set at 1 DE4. The index register is useful as a pointer to an area of memory because any indexed Z 80 instructions, i.e. instructions prefixed by DD, will use a relative to 1 DE4 is to be used in the
instruction. In this case byte number 00 (i.e. 1DE4 itself) stores the required track number, byte number 01 (1DE5) stores (1DE6) stores the number of sectors. The status and data registers are read next (not $\frac{\text { for their contents) to reset the INTRQ and }}{\text { DRO }}$ $\overline{\mathrm{DRQ}}$ interrupt lines if they are active due
to the power-on sequence. Note that this to the power-on sequence. Note that thais
unit is designed to operate with the mark III operating system, (see the scientific computer newsletter) which contains these same four bytes, DB, $05, \mathrm{DB}$ and 1D. They are executed in the high level so that the
MM57109 interrupts are not upset by the disc controlled conditions. 1DOE-14 illustrates the way instructions are sent to the controller. The instruction byte loads into A , in this case a Restore instruction, it
is sent to the command register, the is sent to the command register, the
interrupt is enabled and the $Z 80$ is halted to wait for the interrupt. When it arrives, in this case a INTRQ, the computer reads the interrupt controller byte Fl , adds it to the 1D previously stored in the I register and then reads in the byte at $1 \mathrm{DF1}$ and
1 DF 2 as the address of the $\overline{\mathrm{INTRO}}$ subroutine, which is 1DF9. Execution passes to this address when the status register is read and inverted back to a true state.
Re-formatting a disc As well as reading and writing individual sectors, the controller can read and write
whole tracks using the index pulse as the start and finish of the operation. As described in part one, even before use the disc is fully recorded with ident fields and dummy data. If the ident fields become magnetically corrupted, the entire track before it can be used in the sector mode again. To do this, a block of length $51 / 4 \mathrm{~K}$ bytes must be set up in r.a.m. and then
recorded en bloc. Assembley of this block recorded en bloc. Assembley of this block
requires extra r.a.m. over the basic requires extra r.a.m. over the basic
computer's memory and, given this, the operating system can synthesise the track format. I used a 32 Kbyte expansion (referred to in the computer newsletter) and assembled this block at CO00. To accommodate other r.a.m. locations, the
byte at 1 D88 must be altered. After RUN 1D00, type FORMAT space and then the rrack number, in decimal, to be altered. As continued on page 57

Address	Byte	Command	Function
1DOF	FF	00	RESTORE the head to track 00 and clear the tra
1 D63	57	A8	Assuming the head is to be loaded against the disc, WRITE a single record of IBM format to the track and sector specified by the respective registers, using FB as the data mark.
1 147	EB	14	SEEK the track specified by the data register by stepping the difference between it and the contents of the track register. Then, by reading an Ident Field from the track, verify that it is the correct one.
*1E5D	77	88	Assuming that the head is loaded against the disc, READ a single record of IBM format from the track and sector specified by the respective registers.
1 1669	73	8 C	As above, but it begins by issuing the HLD, head load, signal and waiting for the HLT signal to become active before proceeding.
$1 \mathrm{EB4}$	A3	5 C	Load the head against the disc and then STEP IN by one track, updating the track register. Perform a verify of the track as described above.
$\begin{aligned} & \text { *1D63 } \\ & \text { *1E47 } \end{aligned}$	$\begin{aligned} & \mathrm{OB} \\ & \mathrm{EF} \end{aligned}$	$\begin{aligned} & \text { F4 } \\ & 10 \end{aligned}$	WRITE TRACK. Starting at the index pulse, data is written continuously up to the next index pulse. On a badly corrupted track, it is not possible to verify the head position after a SEEK, so this version of the command omits it.

Here NOW NOW

ELECTROVALJE
 CATALOCUE ${ }^{1} 1$

as included FREE with December issue of PRACTICAL ELECTRONICS t's work-bench size for keeping alongside your favourite journal for instant reference to stock and technical data.

With more to choose from than ever - all the items you have learned to depend on being obtainable from Electrovalue PLUS MANY NEW ONES to bring Catalogue '81 bang up to date. The V.A.T. inclusive price list that goes the next one is issued.
Yes - you will enjoy dealing with Electrovalue - prices are keen - service is tops.
Write, phone or call if you haven't yet got Catalogue 81- and you wil hy return. (We pay postage)
AND YOU GET BONUS DISCOUNTS AND FREE U.K. POSTECTEVALUE WHEN YOU BUY FROM ELECTROVALUE.
ELECTROYALUE LTD. (Dopt. WWW) 28 St Judde's Rd, Englefield Green, Egham. - - - - - - Lo - Please send me my FREE COPY OF ELECTROVALUE CATALOGUE ' 81.
Name
| Address

VERY SPECIAL OFFER OF FULLY GUARANTEED BRAND NEW SINGLE SIDE EUROPEAN MINIDISK DRIVES EXCLUSIVELY TO WIRELESS WORLD READERS

Now really is the time to buy New $51 / 4^{\prime \prime}$ drives will probably never again be so cheap.
Ring the enquiry number for further details.

This offer is exclusive to WW Readers and represents a saving of about $£ 75$ each on the normal RRP.

SPECIAL C.W.O. PRICE: £120
 $+£ 2$ CARRIAGE + 15% V.A.T.

Total C.W.O. Price: $£ 140.30$ per Drive
Cheques and postal orders made payable to:
WW DISK OFFER 49 Milford Hill, Batford Harpenden, Herts

"I NEVER KNEW COLOUR VIDEO COULD COST SO LITTLE"

Don't be put off by what you may have heard - or imagined about the cost of colour video
Talk to Bell \& Howell or one of our Video Centres and et the current facts
The fact, for example, that a portable JVC colour camera osts little more than an ordinary black-and-white camera. And the further fact that by adding a JVC VHS you have a complete colour recording system for as little as $£ 1,300$ plus VAT. For playback, a standard TV receiver is

At these prices every user can benefit from colour Training will be easier to understand; publicity more compelling; management communications more interesting; rôle-playing more effective. After all, we live in a coloured world.

PUSH-BUTTON FEATURES

Don't think for one minute that the low price has been achieved at the expense of useful features. Among other things the camera has an iris control which automatically adjusts lens aperture to match lighting conditions; a 6:1 power or manual zoom, giving close-ups as close as 50 mm ;
$T \mathrm{TL}$ indicators which automatically show exposure level, auto-white balance, operating mode and power level,

BETTER STILL

Or, if you feel inclined to make even fuller use of the camera's capabilities, couple it to a JVC $3 / 4$-inch U-format recorder.

The picture will be improved. You'll have another
soun"d track. to use for foreign-language commentaries or question-and-answer training routines.
On $3 / 4$-inch, moreover, you'll be in the right format to edit and duplicate - or add in library material. And still

the cost of the system needn't exceed $£ 2,700$ plu's VAT. Alternatively, at very attractive rates, it can be leased.

SEE FIRST, THEN DECIDE

You can, of course, spend more. At any Bell \& Howell Video Centre you'll see more expensive cameras, video recorders and electronic editing equipment that wouldn't be out of place in a national network.

But do you need them?
Let the Video Centre, or Bell \& Howell, help you decide. Whatever your decision, two things are certain. One, colour video now costs a lot less than it used to (as well as being highly dependable and very easy to use). Two, every unit in the system you choose qualifies for the Supershield warranty; unique to Bell \& Howell. Under Supershield, all adjustments, repairs and replacements (except for tubes and tapes) are free for two years after purchase. And if a job can't be done on the spot we also provide free transport anywhere in mainland Great Britain to and from a fully equipped Supershield video workshop.
Convert to (or start with) colour. With JVC video equipment. And the Bell \& Howell Supershield guarantee:

Let Bell \& Howell show you the answer:

To Pieter Glas, Bell \& Howell A.V Ltd., Freepost, Wembley, Middlesex HA01BR. Please send me more information about video equipment and a list of your Video Centres. Name
Organisation
Address

The death of electric current

A contribution to electromagnetic theory
by Ivor Catt CAM Consultants

Conventionally a signal can be understood either in terms of electricity in conductors, with
associated fields, or in terms of electric and magnetic fields terminating on those conductors. In this article the author steps. outside the accepted dualism and proposes a mechanism of sign
transmission based on Oliver Heaviside's 'energy current' without recourse to 'conductors' in
their conventional role.
A major advance in electromagnetic theory, which I shall call the transition from
Theory N to Theory H, was made by Oliver Heaviside a century ago. What is proposed here is a transition from Theory H to a third theory, Theory C . It is to be hoped that the response to was the general response to Theory H a century ago, as typified by Sprague, quoted in this article. Until it was revived recently by CAM Consultants, Theory H had been ignored and
then suppressed for a century. It was revived because of its great value in digital electronic design. ${ }^{1,2}$
Theory C has major implications across a whole spectrum of subjects. It could trigger an exciting renaissance in many Whereas the conve electromagnetic theory is to concentrate on the electric current in wires, with some additional consideration of voltages between wires, Heaviside concentrates prithis being the electromagnetic field which travels in the dielectric between the wires. It has an amplitude equal to the Poynting Vector, $E \times H$. Heaviside's phrase, "We in the history of electromagnetic theory between the 'ethereals', who with Heaviside believe that the signal is an 'energy
current' which travels in the dielectric becurrent' which travels in the dielectric between the wires, and the 'practical electri-
cians', who like Sprague believe that the cians', who like Sprague believe that the
signal is an electric current which travels down copper wires, and that if there is a 'field' in the space between the wires, this is only a result of what is happening in the Oonductors.
Ontry heaviside announced Theory H a century ago ${ }^{3}$:
"Now in Maxwell's theory there is the potential
energy of the displacement produced in the dieenergy of the displacement produced in the die-
the kinetic or magnetic energy of the magnetic
induction due to the magnetic force in all parts of the field, including the conducting parts. They are supposed to be set up by the current in the wire. We reverse this; the current in the
wire is set up by the energy transmitted through the medium around it . .
The importance of Heaviside's phrase We reverse this;" cannot be overstated. It points to the watershed between the
practical electricians', who have held sway or the last half century, promulgating heir theory - which we shall call 'Theory N^{\prime}, the Normal Theory: that the cause is lectric currents in wires and electromag netic fields are merely an effect - and the Theory H': that the travelling field is the cause, and electric currents are merely an effect of these fields.
Opposition to any attempted change om the familiar Theory N to Theory H was forceful and successful for the next century. Sprague, a 'practical electrician
wedded to Theory N , with its retention of phlogiston-like 'fluid ${ }^{\prime} \star$, itectricition of centre of he liuid, elecricity, at wrote ${ }^{4}$
"A new doctrine is becoming fashionable of late years, devised chiefly in order to bring the
now important phenomena of alternating currents under the mathematical system rents under the mathematical system. It is
purely imaginery. . based upon ClerkMaxwell's electrom \qquad based upon Clerk-
ic theory of light, itself
reviewer as ${ }^{\text {a }}$ daring described by a favourable reviewer as 'a daring
stroke of scientific speculation,' alleged to be stroke of scientific speculation, alleged ex be ments of Hertz, and supported by a host of assumptions and assertions for which no kind of evidence is offered; but
the 'orthodox' theory.
"This theory separates the two factors of lectricity. ., and declares that the 'current', the material action, is carried by the 'so-called
conductor' (which according to Dr Lodge contains nothing, not even a im impulse, and accord-
ting to Mr O Heaviside is to be regarded as an ing to Mr O. Heaviside is to be regarded as an
obstructor), but the energy leaves the 'source' obstructor), but the energy leaves the 'source'
(battery or dynamo) 'radiant in exactly the same (battery or dynamo ' radiant in exactly the same
sense as light is radiant', according to Professor Silvanus P. Thompson, and is carried in space by the ether: that it then 'swirls' round (cause
for such swirling no one explains) and finds its way to the conductor in which it then produces
 though to be commined with a cax or ashin iombuus-
tibe materias sand to be given of by these material sin
the process of burning leaving the ash behind. This uble material and to be given iff by esese material hir
the process of burning, eleving the ah behind. This
hyponhesis was strongly held in the 18th cenury but was eventually upset by Lavoisier's deductions leading
to the thery of the conservaion of mass. - Ed.
the current which is apparently merely an
agency for clearing the ether of energy which gency for clearing the ether of energy wes
tends to 'choke it, while the conductor serve no other purpose than that of a 'waste pipe' to et rid of this energy
"This much, however, is certain; that if the ether' or medium, or di-electrics carry the
nergy, the practical electrician magine he can get nature to do his work him; the ether, \&cc., play no part whatever in he calculations he has to make; whether copper he has to provide in quantity and cuality to e has to provide in quantity and quality to do energy, he need not trouble about providing for that purposes; he must see to it that he provides it according to the belief that it prevents loss of
current. In other words, let theoretical mathematicians devise what new theories they please, the practical electrician must work upon the old theory that the conductor does his work and the
nsulation prevents its being wasted. Ohm's law (based on the old theory) is still his safe guide "For this reason I would urge all practical lectricians, and all sudents who desire to ga clectricity, to dismiss from their minds the new unproved hypotheses about the ether and the abstract theory of conduction, and to com-
pletely master the old, the practical, and common sense theory which links matter and energy together,
Sprague accurately described Theory N . One of the few supporters of Theory H was J. A. Fleming, who wrote ${ }^{5}$
"It is important that the student should bear in mind that, although we are accustomed to speak of the current as flowxing in the wire in one
direction or the other, this is a mere form of direction or the other, this is a mere form of
words. What we call the current in the wire is, to a very large extent, a process going on in the space or material outside che wire. Just as we familiarly speak of the sun rising and setting,
when the effect is really due to the rotation when the effect is realy due the the rotation
of the earth, so the ordinary language we use in speaking about electric currents flowing in conductors retains the form impressed upon it
by older and erroneous assumptions as to their by oldere."

Heaviside's view

 As time went by, support for Theory Hgradually died out. Let us end Theory H with a long discussion by its originator ${ }^{6}$: "Consider the electric current, how it flows. From London to Manchester, Edinburgh, Glasgow, and hundreds of ofther places, , ayy and
night, are sent with great velocity, in rapid sucnight, are sent with great velocity, in rapid suc-
cession, backwards and forwards, electric currents, to effect mechanical motions at a
distance, and thus serve the material interests of
"By the way, is there such a thing as an
electric current? Not that it is intended to cast any doubt upon the existence of a phenomenon
so called but is it a current - that is something so called; but is it a current - that is, something
moving through a wire? Now, although nothing moving through a wire? Now, although nothing
but very careful inculation at a tender age, continued unremittingly y to maturity, of the doc-
trine of the thateriality of electricity and its trine of the thateriality of electricity, and its
motion from place to place, would have made. motion from place to place, would have made.
me believe it, still, there is so much in electric phenomena to support the idea of electricity
being a distinct entity, and the force of habit is seing a distinct entity, and the force of habit is
so great, that it is not easy to get rid of the idea so great, that it is not easy to get rid of the idea
when once it has been formed. In the historical
devel development of science, static. phenomena came
first. In them the apparent individuality of first. In them the apparent individuality of
electricity, in the form of charges upon conducelectricity, in the form of charges upon conduc-
tors, is most distinctly indicated. The fluids
may be childish notions, appropriate to the in many be childish notions, approppriate to the the ins
fancy of science; but sill electric charges are fancy of science; but still lelectric charges are
easily imaginable to be quantities of a someeasily imaginable to be quantities of a some-
thing, though not matter, which can be carried about from place to place. In the most narrural
manner possible, when dynamic electricity came under investigation, the static ideas were
cole transferred to the electric current, which became the actual motion of electricity through a
wire. This has reached its fullest development in the hands of the German philosophers, from Weber to Clausius, resulting in ingenious explanations of electric phenomena based upon forces acting at a distance between mo
individual elements of electricity.
/"Re
"Return to our wire from London to Edinburgh with a steady current from the battery in
London. The energy is poured out of the battery siderways into the dielectric at a steady rate. Divide into tubes boundect by lines of energycurrent. They pursue in general solenoidal
paths in the dielectric, and terminate in the conductor. The amount of energy entering a given length of the conductor is the same wher-
ever that length may be situated. The lines of energy-current are the intersections of the magof the energy is transmitted parallel to the wire nearly, with a slight slant towards the wire in
the direction of propagation; thus the lines of energy-current meet the wire very obliquely. But some of the outer tubes go out into space to an immense distance, especially those which
terminate on the further end of the wire. Others pass between the wire and the earth, but none in he earth itself from London to Edinburgh, or vice versa, although there is a small amount of
energy entering the eart straight downards especially at the earth "plates". If there is an instrument in circuit at Edinburgh, it is worked by energy that has travelled wholly through the
dielectric, then finding its way into the instru-. ment .

If we keep to Theory H , the theory that If we keep to Theory H , the theory that
the field $E \times H$, travelling along between the wires at the speed of light - what
Heaviside called the 'energy current', is the cause, then electric charge and electric current are merely what define the edge of an energy current. If electric current is
that which defines the side of an energy. current, then we may with equal justification postulate 'displacement current' as that which defines the front face of a step of energy current ${ }^{1}$
Now let us move on to Theory C, when
we drop the dualism - circuit and field that has until now been the foundation of electromagnetic theory. First we shall discuss the reed relay pulse generator, which illustrates som
derlying Theory C.

The reed relay pulse generator was a means of generating a fast pulse using
rather primitive methods. A one-metre section of $50-\mathrm{ohm}$ coaxial cable AB was charged up to a steady 10 volts (say) via a one megonim resistor, and then suddenly
discharged into a long piece of coax BC by the closure of two switches.

8
$\frac{1}{\overline{7}}$
A five-volt pulse two metres wide was A five-volt pulse two metres wide was
found to travel off to the right at the speed of light for the dielectric on closure of the switches, leaving the section AB completely discharged. (The practical device lacked the second, lower switch at B, the argument). The curious
he pulse travellinit is that the width of much as the limg off down $B C$ is twice as tween A and B. Also, the vor a signal bewhat one would expect after the switch was closed, some energy current must have started off to the left, away from the now closed switch; bounced off the open circuit at A , and then returned all the way back to the switch at B and beyond.

This paradox, that when the switches are closed, energy current promptly rushes le, is understath suddenly made availthat a steady charged capacitor is not steady at all; it contains energy current, of light, and the other half travelling to the left at the speed of light.
Now it becomes obvious that when the switches are closed, the right-wards traveling energy current will exit down BC first,
mmediately followed by the leftwards ravelling energy current after it has bounced off the open circuit at A . We are driving towards the principle it can only travel at the speed of light. Any it can only travel at the speed of light. Any two energy currents travelling in opposite directions at the speed of light ${ }^{7}$.
E and H always travel together in fixed proportion Z_{0}.
Electric charg
Electric charge does not exist according To Theory C . The so-called electric charge
is merely the edge of two reciprocating energy currents. In the case of the socalled steady charged capacitor, the add but the magnetic fields cancel, so that
it has come to be thought that a charged
capacitor is devoid of magnetic field.

(Kip 1962) ${ }^{6}$. 'Electric current' is merely the side of a wave of energy current. If a has a sharp side; the so-called celectric current' has infinite density in the outside surface of the 'electric conductor', which Heaviside called an obstructor.
Energy current penetrates an imperfect resistor, from the side. In this case, the region containing a variation in energy current density, the so-called 'electric current', widens and penetrates into the conductor; skin depth is no longer zero.
Nothing exists behind a mirror; nothing happens there. The velocity of the 'things' behind a mirror does not depend on the medium, or material, behind the mirror ${ }^{8}$. As Maxwell's equations show, 'electric current is always derivable as the gradient
on the side of a wave of energy current. Unlike energy current (but like the immages in a mirror), electric current contains no energy, it has no function, and it explains nothing. Electric current does not exist.
Although a cloud cannot exist without edges, the edges of a cloud do not exist.
They have no width, volume, or materiality. However, the edges of a loud can be drawn. Their shapes can be ally. The same is true of the so-called 'electric current'.
eelectric current'.
In the following analogies, the sheep
represent energy, the dogs electricity.
Theory \mathbf{N}. The sheep are forced out of the pen by the sheep-dogs. The dogs then run alongside the sheep. There can only be a forward flow if sheep-dogs first advance on ooth sides of the flow of sheep, which the
dogs direct and cause.

Theory H. The sheep rush out of the pen into the great open spaces. They will go forward regardless, but their direction is actively guided by the sheep-dogs running always keeping level with the foremost always
sheep.

Theory C. There are no sheep-dogs. The heep leave the pen and flow out into th reat open spaces. Some of the space is thought to be the terrain preferred by the dogs.) Here fewer sheep go, and their rate of advance is slower. Some ground is very
obstructive, nearly impassable for sheep.

WRELESS WORLD DECEMBER 1980 Although it might appear that the sheep towards the smooth terrain, this is not so. Neither does a grease mark on blotting paper actively guide the ink towards the ungreasy areas. Thise greasy paper is merely bad blotting paper with poor capillary action, passively guiding the ink. The excision of sheep-dogs from the theory is a giant simplification. Nothing therein. Heaviside was right to call it an obstructor. Half of the primitives in electromagnetic theory disappear, and it ceases to be a dualistic theory. ρ and \mathcal{F} disappear, becoming merely the physically manipulation of E and H, with no more significance than "circularity"' (Letters, June 1979 issue, p. 82).
The direct transition from Theory N to Theory C is similar to the change in comtion, but is more difficult. Phlogiston is very similar to electricity, being a strange 'fluid' which permeates solids. But whereas the oxygen which 'replaced' phlogiston was still within the same body, the not where the electricity was; it is where it was not. This is a very difficult transition. If the idea of replacing the well known phlogiston by oxygen caused mirth at High Table, we have to expect Theory C to I would like to thank David Malcolm Davidson of CAM Consultants for their dogged support for six years. This article is taken from the book Electromagnetic Theory Vol 2, pub. CAM PubEngland.

References

1. Catt, I., Davidson and Walton 1979, The History of Displacement Current, Wireless
World, March 1979 ,pp. 67.6 .
2. Catt, I., 1979, The Heaviside Signal, Wireless
 3. Heaviside, O., 1892, Electrical Papers Vol 1,
p. 438 .
3. Sprague, J. T., 1892, Electricity: Its Theory, 4. Sprague, J. T., 1892, Electricity: Its Theory,
Sources and Applications, p.239.
S.FIeming, I. . 1898 , Magnets and Electric
Currents, p.8.0. ${ }^{\text {5. Furreming, p. } 80}$.
4. Heaviside, ,., 1892, ibid, p.434. Kip, A. F.,
1962, Fundamentals of Electricity and Magnet, McGraw-Hill p. 327
ism, pub. McGraw-Hill, p.327.
5. Catt, I., Walton and Davidson, 1979, Digital
E.ectronic Design Vol 2, pub. CAM Publishing, p. ${ }^{\text {p. Catt, I., }}$, 1979, Electromagnetic Theory Vol 1, 8. Catt, I., 1979, Electromagnetic Theory Vol 1,
pub. CAM Publising, .p.3.
6. Bell, D. A., 1980, Wireless World, September pub. CAMM Publishing, p.
7. Bell, D. A. 1980, Wireces
1980, p. 50 , first sentence.

Appendix
Deffinion of a perfect conductor: $\epsilon=\infty$.
It follows that velocity of energy current
$\begin{aligned} & =\frac{1}{\sqrt{\mu \epsilon}}=0 \\ \text { Impedance } Z_{0} & =\sqrt{ }(\mu / \epsilon)=0\end{aligned}$
In an imperfect conductor, ϵ is very high Impedance $\left(=Z_{0}\right) \rightarrow 0$
Pas velocity is very slow.

Solid-state level meter

- further notes

Several points were not fully explained in in the August issue. The peak hold function was a late addition. Achieved by taking a terminal adjacent to R_{4} to 0 V , this effectively switches off the decay voltage and is extremely useful for peak detection. author says it is a linear and accurate piece of equipment, and the user can employ whatever scaling is required. The attack
changed to 12 V . It should be borné in mind that the decay is no longer linear asin LM3916 is not cascadable, but it can be used with the LM3915 to give a mixed law display with a 40 dB range, albeit with only
19 l.e.ds and without the linear decay; In 19 1.e.ds and without the linear decay: In
this circuit, the dotbar mode select is difficult to implement. For further informaion, consult the National Semiconductor literature.
time of the circuit is about 2 ms f.s.d., which is well within any p.p.m. specifica-
tion, but if this is felt to be too fast, increase the value of R_{o}.
When the unit was used with an oriental cassette recorder of dubious electronic integrity (expensive but no input h.f. rolloff, and no monitoring fac he meter was taken directly from the medium-impedance record output. This is overcome in such cases by using a buffer to isolate the signal and to provide adequate gain to bring the signal up to a useable level. With low imMention was made of the LM3915 and 3916 devices. As the data are quite recent, no consideration for these was made in the original design. The LM3915 may be cascaded like the 3914 , giving twenty steps of
3 dB , but an extra op-amp is required to provide 30dB gain and offset. The regulator is changed for a 24 V type, and D_{6} is

Circuiit for 60 dB display ranne, leff, uses L W39 315

-

\square

RC oscillators: single-element frequency control

by Peter Williams, Ph.D. Paisley College of Technology

The best-known RC oscillator is based on the Wien network, usually in the form of bridge activated by an operational amplifier or other high-gain equivalent. It shares
with the related lead-lag and lag-lead circuits the need for simultaneous adjustment of two components if the frequency is to be varied without change in the loop gain. A number of elegant arnation usually at the expense of an additional amplifier in this overcome these limitations, the Wien network is driven instead via a unity-gain buffer from a tapping on the resistor. By varying the resistor shown the frequency of oscillation is controlled over $>100: 1$ range without change in the oscillatory condition (excepting second-orde
effects due to amplifier impedances, bandwidth etc.). This allows the amplitude to controlled by a suitable amplitude sensing circuit with only minor shifts in the operat ing point of the sensing element. The ratio of resistors differs from that of the conven second-order effects shitt the amplitude but good performance over a $10: 1$ range is readily achieved with the single variable resistance.
This circuit uses the current in the resistance path of the shunt CR network to provide a drive voltage for what would otherwise be the ground point on the feedback potentia
divider. Again variation of the single resistor changes the frequency of zero At the same time the auxiliary amplifier injects a correcting signal into the potential divider to restore the gain condition. It is no coincidence that this and the previous derived from it by drawing in nullor form and manipulating the nullators and norators to produce new circuits, equivalent internally but differing for example in the point on the passive network is grounded. There are yet other practical forms but these two appear most useful each being tunable over a $100: 1$ range using a single variable
resistor. Clearly the output of the auxiliary amplifier must vary with frequency of resistor. Clearly the ootput of the auxiliary amplifier must vary with frequency o
oscillation and the original output is the one that would normally be stabilized. Any of the stabilization methods applicable to the Wien bridge oscillators are equally applica ble here.
Wien network fo lo lag-lead oscillators are known to have identical transfer functions to to the networks are different and there is no direct equivalent to the previous one Another family of oscillators have been described üsing lag and lead networks with the addition of a second variable gain amplifier that, appropriately connected, again
controls the frequency alternative to a variable gain leaving the oscillator gain condition unchanged. A simple tion. In one of the configurations it is found that varying the gain from 0 to +1 gives
control of frequeny then a unity -gain buffer though a high input impedance stage such as a source follower is a convenient alternative. The useful frequency range in this circuit is o
order 100:1 with a low distortion and stable amplitude readily achienable than a 10:1 range.
To. reduce the number of variable components and achieve single-element control of frequency it has been necessary to introduce a second amplifier (or to permit the gain
condition to vary widely placing a strain on the amplitude controllin previous circuit a very simple step eliminates the extra amplifier. Because the variable gain requirement has been reduced to variable attenuation the amplifier is being used only to buffer the lead-lag network from the potential divider. With modern operationa amplifiers, particulariy those with f.e.t. input stages, engh ore the loading effect is
tances to the potential divider resistance can be large enough that the lol negligible for the buffer amplifier to be omitted. In the final circuit shown, $R \ll R$ and oscillation can be extended to low frequencies using relatively low values of capaci-
tance - both because R may be large and because the configuration reduces the frequency further as the tapping point on the potentiometer is increased from 0 to 100%. This circuit achieves frequency variation with a single potentiometer while requiring only a single. operation amplifier. The loading effect cannot be completely
ignored but the usable frequency range though less than for the two-amplifier circuit readily exceeds $10: 1$.
A powerful design tool in creating these variants is the nullor. If the single amplifier The shift in ground point to the of er and the norator bell amplifier form to be produced. The same component values result in the same frequency of osciliation. The differences in performance may be significant as the common mode swing at the amplifier input terminals is $^{2} / 3$ of the output instead of
$1 / 3$. An advantage of this configuration is that the resistance $2 R^{\prime}$ is grounded which makes it easier to control via an amplitude sensing network. It is such practical points that make it advisable to consider alternatives to known circuits - they will not often provide dramatic improvements but each new form may have particular advantage that can be exploited in particular circumstances.

THEORY

- In each of the first two examples the resistor ratio to give the appropriate gain cond ion is assumed, he rrequency co tith the assumption. Oscillator frequency corresponds
Impedance of series arm is $R+1 / \mathrm{sC}$
Admittance of shunt arm $\frac{1}{n+1) R}+\frac{n . s C}{n+1}$
$\therefore(n+1) R=(1+n s C R)(R+1 / s C)$
$s=-\frac{1}{n C^{2} R^{2}}$
$\omega=\frac{1}{\sqrt{n}} \cdot \frac{1}{C R}=\frac{\omega_{0}}{\sqrt{n}}$ where $\omega_{0}=\frac{1}{C R}$

The impedance convertor interpretation is not appropriate to the
$\frac{v_{0}}{v_{x}}=1+z_{s} Y_{0}$
$1+\left(R+\frac{1}{s C}\left(s C+\frac{1}{n R}\right)=2+\frac{1}{n}+s C R+\frac{1}{n s C R}\right.$
But $\frac{v_{0}-\frac{v_{x}}{n}}{2}=v_{x}$ or. $. \dddot{v}_{0}=v_{x}\left(2+\frac{1}{n}\right)$
$\therefore \frac{v_{0}}{v_{x}}=2+\frac{1}{n}=2+\frac{1}{n}+s C R+\frac{1}{n s C R}$ and $\omega=\frac{1}{\sqrt{n}} \cdot \frac{1}{C R}$

- If v_{x} is derived (i) from the RC potential divider driving the
non-inverting input (ii) by applying Millman's theorem (or superposition) and the two results equated, an equation leading to the frequency and gain conditions is obtained.
(i) $v_{x}=\frac{v_{0}}{1+n}(1+s C R)$
(ii) $v_{x}=\frac{\left.v_{0} \left\lvert\, s C+\frac{k}{(n+1) R}+\frac{1}{(n+1) R}\right.\right]}{s C+1 / R+1 / R}$

$(1+s C R)(s C+2 / R)=(1+n)\left(s C+\frac{1}{R}: \frac{k+1}{n+1}\right)$
$(1+\operatorname{sCR})(2+\operatorname{sCR})=\operatorname{Rs}(1+n)+\mathrm{k}+1$
$2+3 s C R+(s C R)^{2}-\operatorname{sCR}(1+n)-(k+1)=0$
Equating real and imaginary separately to zero
$(1+n)=3$
$2-(k+1)=(\omega \mathrm{CR})^{2}$
$\omega=\frac{\sqrt{1-k}}{C R}$ where $\omega_{0}=\frac{1}{C R}$
- As $k \rightarrow 1 \omega / \omega_{0} \rightarrow 0$ and low frequencies of oscillation are attaine Without the need for large time constants. The theory is applicable to
the single-amplifier circuit provided $R^{\prime} \ll$ R as then the loading effect on

EXAMPLES

.The first oscillator is required to have a frequency range from 100 Hz 3 KHz . Choose suitable component values, giver that the available nput resistance with feedback is $10 M \Omega$.
The constraints suggest that the variable resistor has to be $\gg 10 \Omega$ to simiarly to avoid loading by the op amp the resistance should be $<10 \mathrm{M} \Omega$. To meet the frequency range with a dependence on $1 / \sqrt{ } \mathrm{n}$. eresistance has to change by $(3000 / 100)^{2}$ over the whole range i.e. 330Ω and $\mathrm{R}_{\text {max }}=300 \mathrm{k} \Omega$. Then

$$
\begin{aligned}
& \mathrm{R}_{\text {min }}=33 \times \text { contact resistance } \\
& \mathrm{R}_{\text {max }}=\text { op-amp input resistance }
\end{aligned}
$$

with consequent errors of a few percent at the extreme ends of the with co
range.
This example illustrates the difficulty of achieving wide frequency ariation with a single control element - though possible it requires砣
2. The single-amplifier single-element-control oscillator uses permistormance when its $\mathrm{p} . \mathrm{d}$. is 1 V . The thermistor has optimum Choosing an os in.d. value for the and it is dissipating 2 mW values to give a frequency of oscillation of 1 kHz when the potentiometer is set at its mid point.
The thermistor has to be placed at location $2 R^{\prime}$ to control the mplitude - as the amplitude increases the thermistor is heated causing its resistance to fall. This provides more negative feedback,
reducing and then stabilizing the amplitude.

$$
\begin{aligned}
& \text { Thus } P=\frac{v^{2}}{\left(2 R^{\prime}\right)} \\
& 2 R^{\prime}=\frac{1^{2}}{2.10^{-3}} \\
& R^{\prime}=\frac{10^{3}}{4}=250 \Omega
\end{aligned}
$$

This is a standard potentiometer value and presents no problem The R values of the lead-lag network must be $\gg R^{\prime}$ to avoid loading of
the potentiometer, but should not be so high as to be loaded in turn by the op amp inputs. The latter constraint can be virtually removed by
using f bet input on amps, though increased susceptibility to hum pick-up can be a problem. These co
$\left(400 \times R^{\prime}\right)$.

For $k=0.5$

$$
\begin{aligned}
& \omega=2 \pi 10^{3}=\frac{\sqrt{1-0.5}}{C 10^{5}} \\
& C=\frac{0.707}{2 \pi 10^{8}} \\
& =1.12 \mathrm{nF}
\end{aligned}
$$

:1
-

 the potential divider remains negligible. The algebra is equally valid to the nullor equivalent circuit, its
amplifier forms derived from them

DESIGNING WITH

 MICROPROCESSORS I read the letere from R. M. O'Conoro in theOctober issue with ereat dismay and suspect October issue with grear dismay and I suspect
that it has put off few would-be micro system that it has put off a few would-be micro sy
designers and made them think again.
 a microprocessor based system that I have de-
signed and built in iust two months. I was not
 design and make a machine, and it was achieved with grat success.
My business nee
direct maininess nered prodad a machine to offl-line Research Machine $380 Z$ Zutiont We this iseady have a
ise doing other use doing other work. The machine needed. (a)
he ability to read a seim Sette deck; (b) between 2 kyboard and a cas-
ta
 diver ror a tast daiswweel printer. No screen
was needed; the daisswheel provides the userwas needed, the dais
machine interace.)
After browsing thro
After browsing through several back copies of
your journal I reailized that the $Z 80$ is the best and most popular processor around; also, because our Research Machines 3802 uses a
Z80A, then thi could be used to assemble the 280A, then this could be used to assemble the
program which would control the new machine. Careful scrutiny of the $W W$ aricics on $Z 80$ type systems (particularly those by John Adams
on the scienificic Computer) showed that there are not many ways of putring the support logic
arcund a Z80. I therefore tearned how to design a system by studying these articles.
A design was made Amproved. A printed Circuit was then desinged
 To my absolute delight is worked more orsed. Iess
first time. The fauts were in the printed circuit rrack being fracuured; there was no design fault

Finally, and in defence of IIL, $\mathrm{Mr} \mathrm{O}^{\circ}$ Connor | has agit it |
| :--- |
| malh wronges about the miority of these machines use | 'microcode' rather han hard wired instructions. This enables them to 'pretend to be any

machine, not i ust the ICL machine modes shat they replace. It is not true that they are very inefficient indeed.' They run at the same speed
regardess of the machine they are emulating regardeless of the machine they are emulating
and their performance is very high. Does Mr
 accept performance of the kind he describes?
No o, the 2900 range is one of the best in the No, the 2900 range is one of the best in the
world - the sales figures clearly demonstrate $\xrightarrow{\text { that. }}$ Chares Coultas
Reading
Berks

CRANKY VIEWS

I have news for S. Frost (October leters). The millibel, to suse John Stuart M Mills own words, is
an absolut e certainty $-a$ concept that is probably beyond the comprehension of most modern politicicens, , le alone one of the greatest of the So I still stand firml
siginal sull stand firmly by what I said in my
orime (May isue) - that in the context
 intentional.
My second comment uight to have been read more carefully I would never deny the right toa
platarom for cranky views goon heavent there platorm for cranky yiews, good heavens, there
are plenty of those around already and they are frely available on any bookstall. But is it not
 and carefully considered ideas can be discussed?
Or is it he intention of Wireless World to go the way of the comic papers that mascuurade as chnical iournals?
And since, sir, we are geting into a quoting
mach, may I Parry with one from the match, may I parry with one from the same
source: :The libery of the individual must be his far limited; he must not make himself a Can we now get back to ogood engineering and leave poinitial philosophy to others?
Res Williamson

ENGINEERS IN THE
 ARMS RACE

It is as as day for me, having studied Wireless
World for more that World for more than 60 years, to be reading an
editorial in it openly urging civil rebelion, thereby laying isefelf open to a charge of reason Nibeember issue. And
You say, in effect, that our post-war governments - Labour and Conservative - and our
military and industrial leaders consis of meur military and industrial leaders consist of mega-
lomaniacs and insane persons, not amenable to lomaniacs and insane persons, not amenative to
reason but only to forec applied by popular Tessurrecion. I comport myself with the thought
that sucha rebellion is unlikely to result from that such a rebellion is unlikely to resulf from
your intemperate outburs. Tour ineemperate ourburst.
There certainl a case (to which during recent month you have not negeglected to to give
prominence in what is supposed to be atechi, prominence in what is supposed to be a techni-
cal journal) for suggesting to readers that they
at all.
Next
Nat
gramming was purchased and studied. The program to control the machine was written and est it on the 380 Z because of the way inputoutput was implemented. Very careful desk checking was time well spent; there was no
method of tracing the program once it was on the 'new' machine. The program (approx. 1500
bytes) was burnt into two 2708 e.p.r.o.ms and the machine was tested. It worked, although not
quite properly - subsequent sorting out did not take long.
To summarise: It does help a great deal to To summarise: It does help a great deal to
understand how a particular microprocessor
works. It is vital to understand the connections to the processor. It is futile to worry that a particular processor will become out-dated. If every designer held this view then nothing
would be designed! The Z80 has been, and will be, around for many many years. require and if a 32 -bit machine comes along that is 500 times faster than my 280 I will not worry
one bit. I have had the satisfaction of designing one scratch, and with help from the many
from sesition contributors to $W W$, a simple yet very useful
machine for very little cost ((150)) considerable confidence in tackling further microprocesso
that difficult.
give conscientious thought to the morality of
Hheir vocations. The their vocations. There is also a case for asking
them to take ccoconn of the fact that whereas
World war I broke world war II Irokek out 2 y yars anter world war
1, the later ended 35 years aro and still here is I, the later ended 35 years ago and still there is
no wordd war III in spite of the imperialstic
 tions effected by the mere threat of nuclear
power. Have you in mind bringing present power. Have you in mind bringing present
authority in the West to an end, hus introducing a state of chaos hitherto unknown here, and handing ourselves over to the merries of he he
Sovies through the removal of the deterrent which (it is not unreasonable to argue) has extended the duration of general peace so so much
longer than last time in spite of at least as great longer than last ime in in spite of at least as great
aggressive intentions?
 rally to the call to rebel, I Ihve put myself
ammon your demented class. Personally, insead
 however relcuctanty, that there is is a case for the
nuclear deterrent,
are out of of their minds and must be forcibly locked up, I would rather be be
charitable enough to give them credit for having
 obiect of prevening any repection of the dread-
ful senes described in your quotation It is yery ful scenes described in your quotation. It is sery
very difficult to know what to do. But of one very difficult to know what to do. Bur or one
ting I Im sure, hat your dogmaic and insulting atritude is unlikely to make maters any
beter. betrer.
Mexhill
Beroggie
Bexill

My son, who is a test engineer, bought a copy of
the November issue of Wireless W ord the November issue of Wireless World yesterday and showed me the editorial on page 37 entitled
"Microchips and megadeaths." My husband, "Microchips and megadeaths." My husband, wording and presentation of this article. I would
like to say how heartened I was to read your like to say how heartened I was to read your
editorial as I sometimes get depressed by people who call me a traitor, especially as I am a perfectly ordinary middle-age woman with no
strong political affiliations. strong poilitical
Mary Davies
Reading
Since the publication of my letter in November 1979, whether by coincidence or otherwise this
subject has not been discussed in your magasubject has not been discussed in your maga-
zine. I see in the September issue a letter by
Per eter G. M. Dawe who, in my opinion, is highly irresponsible. He says it is dangerous to have a
nuclear capability. I submit that it would be suicide not to have one - and at best we would be puppets of the Russians. We need these bril-
liant people he suggests should be pust liant people he suggests should be put on the
dole - the designers, the constructors, the prodole - the designers, the constructors, the pro-
ject leaders. We are also told they have serious
gaps in gaps in their knowledge. As a tecchnical person I
know this to be rubbish, having known a few of know this to be rubbish, havin
these highly skilled people.
The freedoms we all enioy
The freedoms we peall enio. today were fought
for at a terrible price in the first and second for at a terrible price in the first and second
world wars. Defence costs are wing price of freedom and we should therefore uing price of freedom and we should therefore making a third mistake.
Peter C. Gregor, G4HXV
Ashoon-unidere-Lyne

orinting it. made me very proud. Thank you for is the use of the ultimate weapon, scend: first eapon will inevitably exist in all futures. The If sanity is left in the hands of the engineers, Men surely
microath?
Philip Atkin

Congratulations on your editorial "Microchips
and megadeaths" in the November issue. You are so right. No arms race without the active cosyle of conscientious objection.
Bruce Kent
Campaign for
London WC1 and Perhaps I can make a contribution by outlinng another method for evaluating e on a cheap Mr Finlay showed from first principles that e rather slowly. Faster convergence is obtained -
this to oinary lorm, vi

This can be applied on an ordinary four-funcuon calcularor, even without memory - pro-
vided only that it will treat the display both as multiplicand and multiplier (as most dos) mental effort to find $2^{8}=256$. Enter $257 \div$ on my calculator is 2.7182703 - having an fifth decimal place.

ODDBALL IDEAS

 Mixer", writing in the August issue, is con-cerned about the shops which are closed to oddball ideas. Strangely enough, we academics (not my own choice of phrase, but more appo-
site than 'we scientists,' which I might reasonably claim to be in the view of the lay
public) find ourselves on both sides of the counter in these shops. We are, it is true, sometimes
bothered by 'flat earthers', if one might coin a phrase for the kind of people that have alternato. But equally, we also send 'original' papers
teenth paperback edition. and less reasonably, is the oddball letter that I find unintelligible. If a letter is couched in lanmeanings of words and phrases that are commold in scienuifc and technical inhat I understand what the author mears specialist knowledge and hope that he can have been referred to in my turn, and only once have been referred to in my turn, and only once
have I been able to say 'yes, this chap is not off hiseful'. And what of the 'seeker and may be pointless task of seeking to convince of the physics? A physicist is more likely to "borrow' a new idea if he thinks it useful, than to reject it on the grounds that Newton was always 'right'.
But it has to be couched in standard scientific language or it doess't even get to first base. As
Heaviside discovered. $I \mathrm{~m}$ of course a ers of the Dingle-McCrea, Snow-Leavis, and now in WW the 'Displacement Current', kind, where the Gods are fighting it out way above my
head, and cries of 'oddball' must disturb the calm of editorial offices almost daily. From the of 60 p a month.
Desmond Thackera)
Department of Music
University of Surey

INERTIA OF THE ELECTRON
3. Tang in the May issue of che electron by T. deverica coincidences which have been used to Dr Tang's interesting article could also be a
vised another one which can be summarized by
where G is the constant of gravitation, c the speed of light, e the charge of the electron, h,
Planck's constant and α is the fine structur Of course there is a theory behind it where
the electron is considered as a black hole with the result that bothe and α take up new dimen-
sions, thus rendering the equation dimensionsions, thus. rendering the equation dimension-
ally balanced. But its real interest is that the gher than any experimental value so $673019.10^{-11} \mathrm{~N} \mathrm{~N} \mathrm{~m}^{2} \mathrm{mg}^{-2}$ with a precision It is still 20 parts in a million. It is still a.

The author replies: gravitational constant may indeed be interst-
ing because, as he has mentioned, has been
measured only to an accuracy of several parts

ELECTRONIC ORGAN

 TONE FILTERS有 duced by combinations of organ stops are varied anans and current developments are concerned cle in the October issue). Thus in general we mixed bag of musical instruments - some obso cally modern musical instruments and electronithe modern symphony orchestra sound available the goal of the o "Geir time. (We could even see On a broader front, electman Violin" etc) mensselves as compared with weings to express on conventional musical instruments which can micky and sten or struck. This results in gim Perraps the conventional forms of musical
instrument expression input could be put into electronic instruments, which could then ar give the sound of a Stradivarius violin of trumpet sound flick of a switch!

R, empts to emulate a symphony orchestra is mis velopment as a musical instrument in Northern by the works of $\mathrm{J} . \mathrm{S}$. Bach, well before nal design of the better modern instruments is presence of a few stops with "orchestral", names is a legacy (not necessarily an unmusical one)
from the romantic period around the turn of the century. Therefore the organ is an instrument in
its own right, and its musical literature has litte connection with that of the orchestra or any are several reasons why a good imitation of the being that the electronic version is smaller and per wan me real uing and thas more suited names of stops, "diapason" is concrived from the instruments and is peculiar to the British otrgan

net à pistons" and is of Victorian origin.
In widening the discussion to include oth forms of electronic music we are going beyon
the scope of my article, but Mr Robins's fina comments call to mind the application of decriticism that electronic in modruments music. His sical is too generalised; any musical instrumen is merely a machine for producing sound and annot make sood the inan or crattsmanship competent performer. A Stradivarius is indeed
wonderful instrument, but it would still sound C. E. Pykett

The type of electronic organ Dr Pykett is des tical with the Allen-Rockwell types which pro to waveforms collected from more than one or gan. The largest of these belongs to the inde bert Hall with people, not to mention sound, in an event involving also the resident Fath Willis I want to suggest that there are about ters. difficulties confronting the designer of electronic organs and wish Dr Pykett every suc-
cess with them. I think it was at the Grea Exhibition of 1851 that an organ was pcwered
by steam to the extent that housewives though it was the Last Trump and knelt to pray in the
streets. By the turn of the century sol organs roared very loudly indeed nearly church ing the noise of the gas-engine driving th ripping out baroquer organs which among othe things worked at a very low pressure and ha
broad lines on the frequency analyser, or in other words they produced filtered noise. some pipes, and the board they are set in func tions as a soundboard. This all tends to the One electronic organ compstructed for an Engnglish
parish church used bistables triggered by noise gated alternately to roaden the spectral lines.
Many amateur constructors seem convinced
that each manual should have its own speake system and Curley's organ has 400 speakers.
This resembles the situation where can be played through normal speakers but bass electric guitar has to have a specially strong speaker. There is perhaps a problem here of
occasional peaks building up. Thus if one is simulating 100 pipes at different pitches sounding at IW each measured on the way to the capacity is needed to prevent system a 10 kW all the peaks coincide, to provide 100 times the sound peak pressure arising from one "pipe",
I think there is room to doubt the validity of any approach which averages harmonic spectra
right across the keyboard even though this is only four octaves. Piano design is based on one ascends the key of harmonic amplitudes as on the lowest strings give overtones which are rouble withonics and I would expect the same because it affects the choicce between filtering
out a tone and building it up from components, since a filter affects each note differently. lopes for the different partials and presumably this will be a residual difficiulty for some time to
come. But pipe organs can only get more expencome. But pipe organs can only get more expen-
sive and electronic organs, hoffentilich, will get
cheaper and better simultaneoull. I recom-
mend that readers building organs simulat
some reverberation, in fact a good deal of it, and turn their loft into an organ loft lit only by
small lamp over the music rack, and pretend they're the cantor of Leipzig.

FAllure OF DISTRESS

SIGNALS AT SEA
With reference to Mr Wiseman's letter of June
1979, although the gist of his remarks is rele vant, some of his letter may prove very mitea ing to non-seagoing readers.
It is true that all ships compulsorily fitted
with wireless telegraphy (i.e., those of 1,600 with wireless telegraphy (i.e., those of 1,600
gross registered tonnage and over) carry a battery powered W/T transmitter operating on 500 . which, today, has a p.e.p. output in the regio The supply for the main installation is take in the engine room. This is also covered by emergency supply consisting of a diesel drive generator set of sufficient output capacity to
provide all essential supplies should the main generators fail. This supply is so connected as to
cut in automatically when the main power fails. From this is will be seen that in most emer-
gency situations the ship's radio officer ha access to his main W/T transmitter, the eme
gency diesel set usually being installed outsid the engine room and above the water line I should not like to take up Mr Wiseman, perience that the loss of radiation can only be
blamed slightly on deck or bulkhead feedthrough insulators. The fault must lie in th
practice of designing modern ships with the bridge, accommodation and engine room casing a realistic aerial system ciently. Recently, while serving on board a 250,000
deadweight disturbing experience of not being able to raise mally have been a dooctor in what should no neering officer was suffering from second-degree scald burns and, alchough I knew that within help range there were at least five Rus-
sian, Polish or East German freighters or fish could not raise one in reply to my emergency emergency alarm nas ay british tanker, whos advised me over v.h.f. that my signals were just about readable at under 15 miles.
humidity was a little on the high side (but no more than had been experienced in past years
but the strain aerials posit of salt from spray were neutralised by a degases. The particular aerial layout consisted of parallel to a 13 -metre downgths connected in ment was slung between the signal mast on top of the bridge house and a 60 -ft high funnel
casing to the top of which it was secured at the end of a 3 -ft iron bracket and held up by a wire casing.
Under normal conditions one could (with the transmitter in use expect to register 10 amps on
the aerial ammerer on 50 kHz but as soon as
any high humidity was experienced $1_{\text {ae }}$ dropped

1 amp or less. Despite dropping the main
aerial on as many occasions as possible practice frowned on by most ship's deck officers painting) to wash off carbon and salt from of strain insulators, after a couple of days
problems showed up again after dark. When one's main aerial was rigged between
two high masts and led into the radio room using an aerial of the inverted ' L ' or a ' T ' con tent. The writer remembers the $\begin{gathered}\text { cally } \\ \text { non-exis }\end{gathered}$ when contact was established on m.f.f with
Capetown radio (ZSC) using an IMR M-100a half-wave rectified main transmitter at 2,500
nautical miles, or Auckland radio (ZLD 3,000 miles across the Pacific with the help of a Okay! So it $3801 / 4$-watt full-wave set. and conditions were good, but normally on and over 300 mites to another ship. Today eve drem most sophisticated 1.5 kW synthesized

It is felt that more care should be used in the (certainly in British installations, or more use seems to be frowned on) made of the ecapacitance hat' type, or the folded unipole type, of installations can be observed examples of such German or Swedish vessels (for the use of mast radiators) or Japanese ships for conventional However, when these points were raised recentiy (after my emergency experience) with
ship's superintendent, he raised his hands in horror at the idea of the vessel's owners being
asked to foot a bill of Whenards for a newly designed aerial system. not considered to be worth an extras $\$ 10,000$, he
refused to refused to commit himself. I wonder what his
thoughts would have been if $h e$ had been chief been the man to rip and his engineer officer had he would have put it down to aid. Probably design readers think, I shall be well rewarded. However, I must admit my remarks are egoing to
be raised with my association for consideration by it, and all other seafarers' organisations. I've
only one life; I don't want a lousy bit of wire.
fohn \mathcal{Y}. Boyd (Radio Officer)
Brirkenhead
Mersyside

LEVY ON BLANK TAPES

 I learn with some misgivings that the Mechani-cal Copyright Protection Society is considering the promotion of a Bill to allow the levying of a surcharge on the price of blank magnetic tapes.
While I support the attempts of musicians and their agents to obtain a just reward for their go about it. It sets a poor legal precedent, in that it attempts to penalise people for something they might do - akin to compulsorily levying
the price of a dog licence from everyone in cases they may get a dog.
Should the Society with this proposal, I would like to have their
assurance that users poses other than the duplication of copyright
material will be exemper remerial will be exempted from this levy. As a
reminder, these purposes include: dictation;

WIRELESS WORLD DECEMBER 1980
amateur and professional computing equipmusic; tape 'letters'; recording of broadcast programmes for educational purposes; wildife
recording; recording of effects for amateur dramatics; recording of interviews and spoken
pieces for local radio; telephone answering pieces for local radio; telephone answering
machines; and recording of messages trans-
mitted by licensed amateur radio operators. mitted by licensed amateur radio operators. R. C. Simmons
Chipping Norton
Oxfordshire

ELECTRONIC IGNITION I have been interested to read of the problems
your correspondents have been having with your correspondents have been having with
their electronic ignition systems. I used to have starting troubles with my car and decided to do
the. main switching of the coil by transistors .the main switching of the coil by transistors
father than using the contact breaker directly rather this purpose. The circuit is very simple and
for the
costs less than costs less than $£ 3$ to make. It has now been in
use for more than three years (40,000 miles), use for more than three years (40,000 miles),
and the points themselves are still in perfect and the points themselves are still in perfect
condition. The contacts still need adjusing
. every 12,000 miles or so because there will be
wear on the cam follower causing the gap to wear on the cam follower causing the gap to
narrow slighty with age.

The circuit is as shown. With the contacts
Tr_{1} is off, and hence Tr_{2} is hard on. So hard in fact that the voltage drop across it is in the order of 0.3 volts. Since it is passing a cur-
rent of about 4 amps, it is only dissipating iust rene of about 4 amps, it ined perfectly well with
over 1 watt and has worked out extensive heatsinking.
The contact breaker is The contact breaker is now switching jus
4 mA at the most, and this is purely resistive hence the total lack of pitting etc. hence the to
$D . \exists$ Cope
Southoor
Southport
Merseyside

ADVERTISEMENTS IN

 WIRELESS WORLDAs a regular Wireless World reader I think the
number of full-page advertisements is excessive for the price of this otherwise interesting maga-
zine. It would probably zine. It would probably be true to say mos
readers would pay another 5p or so to reduce th full page ads that seem to increase in number The point is
The point is here that ads on ITV are free
but in this magazine and others you pay to se them. I realize this is a large source of income but it will not be if your readership is reduce down on some of the ads but increase those in the appointments section. With rising unemployment this would serve a more useful pur-
pose to help the electronics community as a pole
whol.
"Wovid"
Haverhill
Suffle

TV VIEWING AIDS Mr Fred Holloway (October letters) has sug-
gested that television sets should be provided with headphone sockets for the benefite of viewers who are hard of hearing. May I suggest
that there is also strong case for the provisio that there is also astrong case for the provision
of this facility for another reason? In many homes there are conflicting simultaneous de-
mands for television sound for one or more mands for television sound for one or more
persons and quietness for others who may wish persons and quietness for others who may wish
to read, do homework or listen to the radio on phones.
A related subject is that of room lighting. Use A related subject is that of room ligh ing. Use
of the conventional room lighting reduces
'effective luminance contrast and colour saturaeffective luminance contrast and colour satura-
tion, while the absence of lighting produces ture a manufacturer demonstrated a receiver with an illuminated area surrounding the screen. Such an arrangement would not be ap-
propriate with today's larger screens, but I find propriale wath touages sarger sureense fitted at the rear of a receiver provides a good "halo". (An incandescent lamp of similar brightness would nee
to dissipate about 60 watts and would increas to dissipate about 60 watts and would in It would be more convenient if manufacturers would provide these facilities.
Roy C.
Suton
Surrey

TV SETS FOR THE

 HARD OF HEARINGIn your October issue Fred Holloway of the
Essex League of the Hard of Hearing recounted his diffficulties in obtaining a television receive with earphone facility. The implication
course was that British industry was once agai course was that British industry was once again
seen to be behind its foreign competitors. No so - Decca produce 14 in, 20 in, and 22 in sets all with a choice of headphones only or both loud speaker and headphones plus tape recording
and with full remote control if required. To this will be added in the autumn of this year a new range of 30 AX models each with the same facili-
ties. According to our information a least three ties. According to our information at least thre
other British manufacturers also supply set fitted with earphone sockets. fitted with earphone sockets.
We shall be glad to send full detais to any
body interested in this particular problem. Ian C. Rule
Decca Radio © Television Ltd
Willenhall
Decca Radio
Willenhall
West Midands
Mr Holloway's letter in the October issue draws attention to the lack of headphone outputs o many tv sets, and the resultant problems for the
hard of hearing. The following comments might be of interest to people in a similar position. Several sets, mainly portable types, have a 3.5 mm socket for use with a low impedance
earpiece. This can be used with normal headphones and a suitable adaptor; the socket can be easily modified to stop switching of the set, an isolating output transformer is usually set, an isolating output transformer is usually
necessary due to the lack of an earthed chassis. For those who do not wish to modify the set, he following are available: small battery amplifiers using a microphone placed near the those with a suiutable hearing aid, simila
microphone amplifiers to drive a simple inducmicrophone amplifiers to drive a simple induc-
tive loop placed round the room. Several Ifrms
including ourselves make suitable models. The

RNID also issue a leaflet on the various types of
"aids" available. "aids" available
P. Royall
P. Royall
Sarabec Electronics
Middesbboungh

Sarabec Electron
Middlesborough
Cleveland
INDUSTRIAL ROBOTS
Granted that industrial robots have been
successfully applied to routine repecitive tasks in the automotive industry, the question nevertheless first arises as to whether we want
every motor car on the road to look and be like every other If as you say in September News, "the natural growth area lies in flexible manufacturing systems, where a large number of dif
ferent product types will be demanded by ferent product types will be demanded by a increasingly sophisticated market", the answer
to the question seems to be definitely in the negative.
If that is so, we may not need robots to make
motor cars, or indeed much else, for that matmotor cars, or indeed much else, for that mat-
ter. There might well come a time, for example when I may not like to have my motor car or built by anyone or anything tha cannot properly appreciate Beethoven's
symphony or Renoir's "Le Moulin de la Ga lette", i.e. that cannot clearly distinguish be -
tween good art and bad art. A high level of sophistication maybe, but one that is certainly conceivable to me.
The amount of "fast-acting tactile, visual and aural sensory devices" that you would have to
build into a robot to enable it to meet this level of sophistication would certainly have to be pretty enormous. I would respectefully suggest,
therefore, that one might have much better luck, or success, by endeavouring to emplo some of the two million uncmployed "fast-acting tactile, visual and aural sensory" individual
who are at present on the labour market. who are at present
Peter G. M. Dawe
Oxford.

AERIAL INSULATORS

AT SEA
iseman, in his August letter on the subject of the distress frequency at sea, has
clearly defined the necessity for thoughtful an tenna design, with fewer (parallel) insulators, better shielding, and greater capacitance. Mr . Hiseman also makes reference to the Admiralty oks, and would like to supplement . ollows: "II is, therefore, the duty of the wireles staff to keep all these scrupulously clean, espe-
cially after heavy steaming, heavy rain or bad weather, since under these conditions the insuweather, since under these conded with a semi-
lators will probably be covered with
conducting layer of 'stokers', dirt, or dried salt." radiation, not so much a flushing of the insula raors with, rain or sea-water. Thus, if the insulaors are cleaned regularly, as their Lordships of Admiralty once instructed, it is almost a cer-
tainty that no difficulties will be experienced except in special circumstances such as arise in eas like the Persian Gulf, where sand and Wray may combine.
uency antennae, the cle insulated medium freoses little difficulty, and there is the insulato ll for it to become salt, stokers, or dirt en Mr Venekamp's low impedance antenn (August letters) may contribute to a solution,
but I don't think we should avoid cleaning it. I. I. W. Savzyer south Africa
Natal, Republic of South

E.p.r.o.m.

 programmerA low-cost programmer for use
with Intel 2716 e.p.r.o.ms has with Intel 2716 e.p.r.o.ms has
been introduced to the market by
俍 Technova Developments Ltd.
After a sequence is written into the After a sequence is written into the
programmer, addresses can be inprogrammer, addresses can be in-
cremented automatically. Also,
addresses already addresses already entered can be
selected for verification and/or alteselected for veriication and/or alte-
ration to allow possible errors to be ration to allow possible errorrs to be
corrected before the e.p.ro.m. is
and programmed. Crystal control is
used for the program puilse length used for the program pulse length
to increase programming reliability and, at a one-off price of
E475 $+v a t$ the £475+v.a.t., the unit could be use-
ful to development engineers who ful to development engineers who
wish to program e.p.r.o.m.s for prototypes, or to modify existing programs. Technova De-
velopments Ltd, Francis House velopments Ltd, Francis House,
Blofield Heath, Norwich, Norfolk NR13 4SF.
ww 301

Microwave

detector
Now that microwave ovens used in otels and restaurants must comply
with the regulations of the Health and Safety at Work Act, the need
for cheap, simple but effective for cheap, simple but effective
methods of detecting microwave methods of detecting microwave powered "pocket", tester, the
model TS256 from Bach-Simpso oodel TS256 from Bach-Simpson, alarm when r.f. leakage greate, han $4.5 \mathrm{~mW} / \mathrm{cm}^{2}$ is detected, and its
nly control is a combined on $/$ of only control is a combined on/of
and "battery-test" switch. De signed for use in the ISM band, the
TS256 is calibrated at 2450 MH z S256 is calibrated at 2450 MHz nd is said to be practically immune
failure caused by excessive field strength or physical abuse. Possible leakage is detected by simply
switching the tester on and passing it around the seals of the oven, the only stipulations being that the oven is switched on at "high", and
has been for a period of one minute has been for a period of one minute
prior to testing, and that the oven has in it a plastic vessel containing around 275 ml of water. The price son (UK) Ltd, Trenant Estate, Wadebridge, Cornwall PL276HD WW 302

Hard-copy unit High-resolution, continuous-tone copies can be produced in a matter
of seconds from raster-scan video sources using the Tektronix 4364
maging hard-copy unit. With an image of $15 \times 20 \mathrm{~cm}$, the copier uses record onto dry-silver paper with-

WW 303
out the use of toners or developers. graphic quality images and claim it Front control panel and front paper
loadtexit allow the unit to be unobbadexit allow the unit to be unob
rusively mounted into a video system. The 4634 is self-contained,
usually requires only a single cable usually requires only a single cable
connection and can be interfaced to most video sources whether anal-
ogue or digital. An a.g.c. circuit is included which tracks sthe innuut sig
nal to reduce the effects of varianal to reduce the effects of varia-
tions at the input and a grey-sale
range with twelve levels is also featured. The makers say that the unt
was designed to provide photo
is a cost-effective alternative to other display recording device tronix UK Ltd, Beaverton House P.O. Box 69, Harpenden, Herts.

Miniature moto With a supply potential of 1.2 cap can develop a mechanic power of 70 mW although it mea-
sures only $7 \times 12 \times 16 \mathrm{~mm}$. These
features, together with a starting
 speed of 11,000 r.p.m. and low-
inertia, are said to have been made. inertia, are said to have been made
possible by combining the use of possibe by combining the use of
new materials with established denew matechniques. Gold-alloy
sign tech
brushes samarium-cobalt magnets, brushes, samarium-cobalt magnets,
sintered-bronze bearings and the maker's ironless rotor are all in-
cluded in the design. Portescap (UK) Ltd, 204 Elgar Rd, Reading RG2 ODD

Strain mete
Field measurements can be made with the DMD20 battery powered
and portable strain meter with and portable strain meter with digi
tal readout. Hottinger Baldwin tal readout. Hottinger Baldwin
Messtechnik GmbH, represented
by Carl Schenk Ltd, manufacture Messtechnik GmbH, represented
by Carl Schenk Ltd, manufacture
the instrument which provides the instrument which provides
energizing for transducers, and energizing for transducers,
operates with a carrier frequency of 225 Hz . Strain-gauge half and full
bridge circuits with resistances
for bridge circuits with resistances
from 60 to 2000Ω can be used in conjunction with the meter to indi-
cate strains of up to $\pm 1999 \mathrm{~m} / \mathrm{m}$ cate strains of up to ± 1999 um/m and gauge matching and balancing
facilitites are built in. Although prifaciuries are built in. Alhough pri-
marily designed to indicate static
values, the meter has an analogue values, the meter has an analogue
output which allows the recordin output which allows the recording
of low-frequency dynamic values
also. The same manufacturers have also. The same manufacturers have
also announced extensions of thei also
range of strain gauges. Carl Schenk (UK) Ltd, Stonefield Way, Ruisww 305

Continuous

coverage

receiver

Any frequency in a range from
50 kHz to 29.7 MHz can be in, using the McKay DR $33 C$ tuned in, using the McKay DR
munications receiver, distributed by Lee Engineering Ldd, which makes use of phase-locked digital
frequency synthesis, with crystal frequency synthesis, with crystal
control, to enable continuous and accurate coverage of the full range,
and a large, six-digit, display for and a large, six-digit, display for
frequency readout. Demodulation frequency readout. Demoduato
for either a.m., u.s.b., 1.s.b. or c.w. (also r.t.t.t.y. with an external converter) is switch-selectable, as
are r.f. filtering, which ranges from four to eight kHz , and noise limiting. A high-level r.f. front end, and a doo used for goonced i.m. rejection and
are ung-mixer are
sensitivity; whilst crystal filters in the first and second i.f. amplifiers,
and a ceramic filter in the third are and a ceramic filter in the third, are
provided for the rejection of all undesired frequencies and good selectivity. A.m. envelope detec
tion is carried out using a class

WIRELESS WORLD DECEMBER 1980
configuration, which has the advan-
tage of giving low-distortion, even
at high modulation levels. Variaat nig modulation levels. Varia-
tions on the DR 33 C model are lions on the DR 33 C model are
available, as are an active all-wave
antenna, and passive antenna, and passive r.f. preselec-
tors ranging from 0 to 00 MHz in 9 tors ranging from 0 to 30 MHz in
bands. The DR 33 C costs around
£950. Lee Engineering £950. Lee Engineering Lots, Napier
House, Bridge St, Walton Thames, Smurrey KT12 1AP. ww 306

Keyboard
 protection

Moulded rubber covers to protect
keyboards can be made to keyboards can be made to manufac-
turers' specifications by Kea Flex Ltd. These covers make possible the use of keyboards outdoors and in dusty, humid enviroments such
as process plants and mills. One as process plants and mills. One
such cover already made by this manufacturer for Racal Datacom
has individual raised keypads to imhas individual raised keypads to improve tactile response, bonded
white key symbols, and is made
fro from silicone rubber to give it
mechanical flexibility and resismechanical flexibility and resis-
tance to high temperatures and
chemical contamination. Kea Flex say that they can provide a complete design, development, tool-
making and moulding service making and moulding service
specially geared to handle difficult customer requirements. Kea Flex. Mouldings Ltd, Broxhead Wo ww 307

16k modem

The world's first $16,000 \mathrm{bit} / \mathrm{s}$ mo-
dems to be made available cially is the claim made by Plessey cially is the claim made by Plessey
for their 16000 series. An improvement on the 16001 , the first design in the serse, is expected to be avail able in January and is designated
the 16002 . The second version is suitable for data communication as
well as digital speech transmission well as digital speech transmission
and also offers improved performance on poor lines. Quadrature amplitude modulation has been chosen as the means of carrying informa-
tion over voice frequing lines tion over voice frequency lines as it
offers high noise immunity. The two carriers in quadrature are at a
frequency of 1700 Hz and each can frequency of 1700 Hz and each can have eight possible amplitudes. In
order to reduce the effects of line
noise which noise which would normally cause
unacceptably unarceptably high error rates, a to available as an optional extra. Ples-
sey Digital and sey Digital and Network System
Ltd, Taplow Court Ltd, Taplow Court, Taplow
Bucks. ww 308

Humidity control

 switchNatural hair is ised as the sensing-
element in this control unit element in this control unit, the
Regin type-HR room humidistat Regin type-HR room humidistaa
from Appliance Components Ltd.
Any desired reltive Any desired relative pumidity limit
value from 30 up to 900% an be

ww 307

wW 308

using a dial on the front of the unit
and the hysteresis of the limit
and switching point is low at $\pm 1.5 \%$ r.h. The taut hair of the sensor
stretches as the humidity of the air stretches as the humidity of the air
around it increases. This means
that if the sensing-element should that if the sensing-element should
break, become wet or not be recali break, become wet or not be recali-
brated after a certain period of time, the humidity of the room will
tend to decrease rather than in tend to decrease rather than in
crease, an inherent safety function crease, an inherent safery function
not found in for example cottontot sensors which shrink with in
creasing humidity, Calibration of creasing humidity. Cailibration of
the $165 \times 60 \times 38 \mathrm{~mm}$ wall-mounting
nnit is simple, and its control unit is simple, and its control
microswitch has a contact-rating of 10 A at 480 V a.c. into a resistive
load. Possible applications of the ype-HR include the control of humidity in computer rooms, air-
conditioning systems and labor conditioning systems and labora
tories. The 100 -off price is around E17.34 per unit. Appliance Components Ltd, Cordwallis St, MaidenwW 309
C.r.t. controller Design aims of this r.o.m
programmable c.r.t. controller were to reduce the manufacturing
costs of intelligent c.r.t. terminals, word processors and information display equipment produced in
large quantities. The S68045 from MI Microsystems Ltd is pin com-
patible with existing software programmable devices and can directly replace those such as the ter fonts and display formats have been established. Two complete character and display programs are
stored in r.o.m. in the S68045, which makes use of the same power supplies and clocks as the devices it to replace. This offers, the manufacturers say, cost savings of up to
40% AMI Microsystems Ltd, Princes House, Princes St, Swin-
on, Wilts SN1 2 HU ,
ww 310
F-V converter
Low drift and high reliability are
claimed for the Teledyne Philbrick aimed for the Teledyne Philbrick converter which is available through Technical Selling Services. With a guaranteed linearity error of
less than 0.008% f.s., the 4736 can ess than 0.008% f.s., the 4736 can 1 MHz and gives an output voltage
which is linearly proportional to the hich is linearly proportional to the input signal frequency regardless of
the waveform used. Mounting onto p.c.b. is simple as the hybrid-type
package used has a package used has a 24 pin d.i.1.
ayout. Minimum and maximum layout. Minimum and maximum voltage) and 12 V respectively,
while the maximum output voltage hile e nax the maxput voltage current is 20 mA . Versions are available which have undergone 100% sreening simila to My-sid 883 , sethod 5008. Technical Selling
Services, 80 a High St, Camberley,

All very well, but It isn't often I can report what seems to me a hopeful sign of renascent sanity, but it's
all the more welcome for its rarity. If you all the more welcome for its rarity. If you
can be bothered with the rest of the issue after reading this page, you may come across a piece by one of our hacks on air traffic control in which the said hopeful sign makes a brief appearance. the civil aviation people to provide air traffic controllers with all manner of computery, which it is hoped will enable them to see what is going to happen in about quarter of an hour unless they tell the pilots to do something else. In this way,
they will be able to tell whether everything will proceed in an orderly and thoroughly British manner, or whether there is going to be an almighty bang
To the naive, this is just the ticket, and one might imagine that controllers would be absolutely delighted to exchange important parts of their anatomy for such equipment. But air traffic controllers are no noted for their naivete, and engineers rather lest so,
rowed eyes. don't like much, they sa What they don't like much, they say (and the people developing the stuff quite
see their point) is that the displays are so see their point) is that the displays are tak
convincing that they find themselves ing the computer's word for Gospel, and they're realistic enough to insist that nothing is that perfect. Well, you can see wha they mean - when a couple of airliner captains come on the air to point out that they haven't been trained for close-forma-
tion flying, and would you mind awfully making the other one go away, it is absolutely not on to explain that it's all righ really, because the computer says so. So, you see, there's hope. So long as "Yes, but . . ", we can rest easier in our economy-class, battery-passenger cells.
by any means make money
"It is in the game for profit, and the service it provides is incidental, a means that main purpose." Thus the editorial at the other end of this month's issue, inde pendent television being the target. It is just possible that there may be a
couple of you out there who think the couple of you out there who think the above remark is going ad oit far. and they have to show adverts to pay fo he programmes, which are obviously the reason for broadcasting at all. They are The programmes seem to be regarded by
the companies as a rather time-wasting and expensive way of filling the time between adverts. Admittedly, with some of the stuff they put out, I wouldn't argue with them, but for a method of propagating infermation as prodigal of bandwidth as make vast amounts of money by advertismake vast ame to me obscene.
I can vouch for the prevalence of this view of television among the companies and will illustrate it by reference to a visit I once paid to Yorkshire Television. I'd
gone there to see some new equipment gone there to see some new equipmen
they'd had installed, and arrived just after a breakdown lasting some hours. I com miserated and said "How awful" and "Dear, dear" and all the usual things and was a bit taken aback when the very senior engineer I was talking to said tally it hadn they'd only lost about fifteen minutes. Apparently the loss of several pro grammes didn't count: it was the fiftee minutes of adverts down the drain and the them to hop around briskly mending fuses or whatever they do. So there you are never mind the programmes; feel the ads

The game of the name The Dutch are a fine race, and I have often The Dutch are a fine race, and I have ofte thought it was a crying shame they never
learned to speak properly. Still, they do keep trying, and to prove it, a Dutch publisher recently sent a letter, couched in the unlikely combination of characters that am reliably informed passes for a language abound.
Now, my adventures in foreign languages, apart from those that are dead an therefore 'useless', have been confined in the main to a discussion of extraordinary insist on keeping a supply of pens in the garden. I am not, therefore, well prepared to decipher communications even in single Dutch. Luckily, the newest member of our editorial team has been exposed to the
lingo for some years and is able to make sense of it. So I asked him to cast his ey over it and give me the gist, which he did It seems that two magazines, Elektronica Hobbie and $E L O$ are to merge under a new name, which they have decided is to be
Hobbit. It does have a hyphen - Hob-bit - but it is pretty clear that it has appeared in translation.
I have no quarrel with the name Hobbit. As names go, it is a perfectly good name. I want to read books on the subject, but it
seems harmless enough. But to call an electronics magazine after a hairy-footed denizen of Middle Earth does indicate a certain self-imposed limitation in circula-
tion figures. We shall see, but it's going to need some very explicit covers if confusion is to be avoided. Maybe they don't read k's in Dutch - I wouldn't be a bit surprised
Best of luck to Hob-bit, anyway.

Real estate

As befits a journal with a readership of Wireless World, the standard of letters we receive is a cut above the normal run of
'letters to the press'. I have been terribly impressed by all the erudition displayed over displacement current and electrons, and only wish I could contribute myself But I have always thought it important to know one's limitations, and displacemen
current, relativity and many other rarefied subjects are well on the 'no-go' side of mine.
I do feel, however, that all this about ought not to be allowed to go unmight be caught short without either gues sing stick or calculator, and experience an urgent need to know the value of e. I'v noticed several letters offering valuable ad vice here, and this is an area where I do whether many folk would be able to remember those funny sentences, such as 'In Wapping, a quantity of penguins glowered at grumpily fled', so I've com up with another idea.
My method could be used in any cir
cumstance, but preferably while standin cumstance, but preferably while stand wood, or moor or whatever is to hand: on of the Ordnance Survey plans should be helpful here. Stand there until you have
managed to attract the attention of twenty managed to attract the attention of te used,
passers-by - more or less could be use but the arithmetic becomes inconvenient. Now get them to distribute themselves equally over the area you have chosen (offers of money or quantities of alcohol
make this easier). This done, you mark out the land by drawing lines exactly midway between people, and then you can tell them all to go away. It should be possible to do this without causing offence, but i not, you might find it necessary to feign
madness - this often averts aggression. It only remains to measure one of the small areas enclosed by the lines you hav drawn, which will be found to be 2.7182818284 acres

Alternately, you could try remembering

Break-out Box

* V24 Terminal interface activity tester ${ }^{\text {\& }}$, * Battery-powered \star
\star Dual-indicline switch control \star © Sumple to use.

MORE GOODIES IN OUR CATAOUUE SEND MEDUM SIZED BAE FOR

It's easy to complain about advertisements.

TARGET ELECTRONICS

$$
16 \text { Chorty Leano, Brotstot BS } 3 \text { NG }
$$

$$
\frac{\text { OFFICIL ORDERS WELCOME. GVT. \& EDUCACAIONAL DEPT. ETC. }}{\text { Panel Meters }}
$$ Panel Meters

\square

WIRELESS WORLD DECEMBER 1980

NEW!

ETI VOCODER
COMPLETE KIT onLy $£ 195+$ VAT

14 CHANNELS!
NOISE GENERATOR!
SLEW RATE CONTROL
Kit includes FREE foot control and test oscill

2 OSCILLATORS! 2 OSCILLATORS!
voiced/
LEDVOBCed d detector

Value Added Tax not included in prices

POWERTRAN ELECTRONICS

our catalogue is FREE! write or phone NOW

TRANSCENDENT 2000 simgle boabo swwthesizer

COMPLETE KIT ONLY
$£ 168.50$ + VAT!

NEW! TRANSCENDENT POLYSYNTH

EXPANDABLE POLYPHONIC SYNTHESIZER AS FEATURED IN Electronics Today Internationa COMPLETE KIT from $£ 320$ + VAT

TRANSCENDENT DPX

|TIル

The Transendent DPX is reall veratit ${ }^{5}$ Cabinet size $36.3^{\prime \prime} \times 15.0^{\prime \prime} \times 5.0^{\prime \prime}$ (rear) $3^{3.3^{\prime \prime}}$ (front)

MANY MORE KITS ON PAGES 93 and 97. ORDERING INFORMATION ON PAGE 93.

Conquer the chip.
 Be it a career, hobby or interest, like it or not the Silicon Chip

will revolutionise every human activity over the next ten years.
Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.
Learn the technology of the future today in your own home MASTEREETRONGS LEARN THE PRACTICAL wa

- Building an oscilloscope. - Recognition of components. - Understanding circuit diagrams. - Handing all types Solid State Chips. - Testing and servicing of Radio, T.V., Hi-Fi and all types of modern computerised equipment.

MASTER COMPUTERS

LEARN HOW TO REALLY UNDERSTAND COMPUTERS, HOW THEY WORK - THEIR 'LANGUAGE' AND HOW TO DO PROGRAMS - Complete Home Study library. - Special educational Mini-

Computer supplied ready for use. © Self Test program exercis

- Services of skilled tutor available

MASTER THE REST

Radio Amateurs Licence. \bullet Logic/Digital techniques. - Examination courses (City \& Guilds etc.) in electronics. - Semi-conductor technolog - Kits for Signal Generators - Digital Meters etc.

Zaerix

Electronics Limited

46 Westbourne Grove London, W2 55F

PROFESSIONAL QUALITY

Desk consoles, instrumen cases and boxes which feature anodised aluminium integral facilities to mount sub chassis and PCBs.

Telex: 261306 Tel. 01-7275641

MPA 200100 WATT (rms into 8Ω) MIXER / AMPLIFIER

CHROMATHEQUE 5000 EFFECTS SYSTEM

COMPLETE KIT ONLY
£49.50 + VAT!

POWEFTRAN
SYNTHESIZER KITS ON PAGE 95; MORE KITS AND ORDERING INFORMATION ON PAGE 93

DE LUXE EASY TO BUILD LINSLEY HOOD 75W STEREO AMPLIFIER $\mathbf{\varepsilon 8 5 . 0 0 ~ + ~ V A T ~}$

 controls and tape monitoring while distortion is less than 0.01%.

BLASK HOLS
MUSIC EFFECTS DEVICE - AS FEATURED
IN ELECTRONICS TODAY INTERNATIONAL

COMPLETE KIT ONLY $£ 49.80$
De Luxe version (dual delay line system) also available for (single delay line system) binet tize $10.0^{\prime \prime} \times 8.5^{\prime \prime} \times 2.5^{\prime \prime}$ (roar) $1.8^{\prime \prime}$ (font)

T20 + 20 20W STEREO AMPLIFIER £33. 10 + VAT

BULK EPROM PROGRAMMING

S 100

Do You Have All These Facilities On Your S 100 System, With. Just Two Boards?

SEMEL

MICROCOMPUTER - HARDWARE - SOFTWARE
3c Barley Market Street, Tavistock, Devon PL19 0JF Tel. Tavistock (0822) 5247. Telex: 45263

The Monolith C1000 is a new British-made twin-motor tape transport, ideal for a wide range of industria applications.

- High reliability.

Buy now!

- Four remote functions - stop, play,

Exstock
$£ 36.95$
Supplied complete with spooling
and capstan motors, drive solenoid,
and

+ VAT ($£ 2.50$ p \&
and $1 / 2$-track record/playback and
$+\operatorname{VAT}(\varepsilon 2.50 \mathrm{p}$ \& p)
The C1000 is a major cost reduction development from the successful Monolith C 2000 series of remote
operation transports, which is widely used in process operation transports, which is widely used in
control, data logging and computer ystems. control, data logging and computer systems.
Ask for details of our control circuit boards,
search, position sensors, specialised heads and search, position sensors, specialised heads and
other products.

LLITNTHLIL

(2) NILINEIOW

WILMSL
AUDIO

REPRINTS/CONSTRUCTION DETAILS OF ABOVE DESIGNS $\quad 10 \mathrm{p}$ EACH

ALL PRICES INCLUDE VAT @ 15\%

, SWIFT

OF WILMSLOW
${ }^{5}$ Swan Street,
Wilmslow,/Cheshire.

Send 50p for 1980
catalogue 'Choosing a Speaker'
:---
ORDER \& EXPORT OO
UNITS, KITS, ETC.

Lightning service on telephoned credit card orders!

HILOMAST LIMITED THE STREET HEYBRIDGE - MALDON ESEEX CM9 7 NB ENGLAND
Tel. MALDON (0621) 56480 TELEX NO. 995855

RADIO SHACK LTD for DDAKE

Ham Bands with 1.5-30 MHz receive with built-in 150 MHz frequency counter plus option of $0-1.5$
transceiving application $1.8-30 \mathrm{MHz}$.

RADIO SHACK LTD

 For CommuniTrio testgear.
$= \pm=2$ $\pm \boxed{2 v=2}$
RADIO SHACK LTD
188 BROADHURST GARDENS, LONDON NW6 3AY
 Cablee: Radioñ Shiack, Londopn, NW6. Tollex: 23718 Memories
$2114-300 \mathrm{~ns}$ $4116-200 \mathrm{~ns}$ $2708-450 \mathrm{~ns}$ $2516-450 \mathrm{~ns}$ $2716-450 \mathrm{~ns}$ 2532-450ns
$1 \mathrm{k} \times 4$ SRAM
1kx4 SRAM £2.25 $\begin{array}{ll}16 \mathrm{k} \times 1 \text { DRAM } & £ 2.61 \\ 1 \mathrm{k} \times 8 \text { EPROM } & £ 3.60\end{array}$ $\begin{array}{ll}1 \mathrm{k} \times 8 \text { EPROM } & £ 3.60 \\ 2 \mathrm{k} \times 8 \text { EPROM } & £ 7.92\end{array}$
 4kx 8 EPROM £23.40

Please add 50p for postage and VAT Send SAE for price list

STRUTT LTD.

ELECTRONIC COMPONENT DISTRIBUTORS MANUFACTURERS \& SUB-CONTRACTORS MANUFACTURERS \& SUB-CON

3c Barley Market Street
3c Barley
Tavistock
Tavistock Devgland PL19 OJF
Tel. Tavistock (0822) 5439/5548 Telex: 45263

WIRELESS WORLD DECEMBER 1980

 on ONE BOARD - at around HALF THE PRICE!
tr's taken three whole years to produce the BigBoard
designed from scratch to run the latest version of CPIM, so just imagine what software you could run WITH NO MODS NEEDED! In fact, add a couple of
$8^{\prime \prime}$ Disk Drives, a Video Monitor and: Keyboard, then
 an enclosure and connect a suitatele Power Supply and
youll have a Total usiness System for robur .NE
THIRD the cost: That's whiat you call BigBoard Thexibility: power - - and sheer operating value: Send
Then
Size 81/2 $\times 133 / 4$ inches. Requires + 5V @ 3 Amps +/- I2V@0.5Amps.

From Newtronics

THE NEW EXPLORER / 85 SYSTEM

EXPLORER/85

PROFESSIONAL COMPUTER KIT

An inexpensive
8085, S100 Based
Computer System designed
for maximum flexibility Now available with 8'1 Floppies

Compare these prices carefully and you'll find you are actually getting more for your money.
4K space not enough? Then it's 'JAWS' for you (see below) and you can go up to 64 K in 16 K steps. We'll let you have a 16 K EXPLORER/ 85 for only $£ 399$

8' ${ }^{\prime \prime}$ FLOPPY DISC SYSTEM

Mcamisw

ELF II

EEF ELI WITH VIDEO OUTPUT

send sae for comprehensive brochure Plaase add VAT No all pricos. P\&PP extra. Prease make cheques and postal orders
payable to NEWTRONICS or phone your order quoting BARCLAYCARD, ACCESS payaber We are open for demonstrations and Sales. Monday
Near lighgate U deerground on main Al into London.

64K 'JAWS' S 100 DYNAMIC RAM BOARD

Tenutridics

 TVM-10 MONITOR£99.50
IDEAL FOR APPLENASCOM

- Designed for monito

Vesigned For Moniorit
Video Tape Recorders
$10^{\prime \prime}$ black and white video monito
10 MHz band width
$\mathrm{H}^{2} \mathrm{l}$.

- ${ }^{10} \mathrm{MHz}$ band width
- High-quality metallic cabinet

Marshall's

he new Marshall's 80/81 catalogue is now
available. A veritable treasure house o components, test gear, tools, etc.

Lots of old friends, but also many new products including Leader test gear, Crimson Hi Fi Modules, Rechargeable NI Cad batteries and chargers (very competitive). More components including SN74ALS series, new tools etc.
We are franchised distributor for Arrow Hart switches; Mullard; National; Siemens Thomson; CSF etc.
Send for our latest catalogue Free to industrial customers: 75p post paid to private individuals.
A. Marshall (London) Ltd. Kingsgate House Kingsgate House,
Kingsgate Place, Kingsgate PWace,

Industrial Sales: 01-328 1009
Mail Order: 01-624 858224 hr service
Retail branches: London: Glasgow: Bristo

ORION SCIENTIFIC PRODUCTS LTD.
10 Wardour St., London W1

TV TUBE REBUILDING
Faircrest Engineering Ltd., manufacture a comprehensiv
 lished or new businesses. We export world-wide and have a
excellent spares service backed by a strong technical team. Full training courses are individually tailored to customers
full details of our service contact Neil Jup

WIRELESS WORLD DECEMBER 1980
 Toroidal

TRANSYORMHRS

IN A RANGE OF
75
TYPW

We use advanced winding technology to make our toroidal transtormers. They
have only hat the weight no h height of their lamineted equivalents and are
apprecibly the
 Which they yer rapidly replacing. Induced hum is seduce by by atactoro of tien.
Supplied with ngid mounting kit with centre bolt, steel and neoprene washers.

CHOICE OF 3 PRIMARY INPUTS

* CUSTOMERDESGCNENQURIESINVITED.

FREEPOST facility.(U.K. only).
SO ORDER adress envelope to FREEPOST to address below. NO STAMP REQURRD.

(-$)_{\text {Adivsion of LLP }}$ TRANSFORMERS

Phone (0227) 54778

PICKUP... ANDCHEGKUPI

Around the world some thousands of radio stations are sending signals. If you're receiving, this standard broadcasting in the long mo's where. It lists stations bands, dealing with them by frequency wave and vh location and alphabetical order. Sections are helpfully cross referenced. The Wireless World Guide to roadcasting Stations is the eighteenth edition of a publication which has sold over 270,000 copies. n addition to the stations data, it includes much ropagation, signaliden on radio receivers, aerials,
_an-anareceptonreports
wireless world GUIDE TOBROADCASTING

STATIONS 18th Edition

DC/DC AND DC/AC CONVERTERS

The table below shows our standard range. Please contact us for your other requirements

Type	Input	Output		
		Volt DC Max. current		
692	6	12	2 A	d
707	6	12	3 A	d
712	24	12	2 A	b
744	24	12	5 A	b
7411	24	12	6 A	b
$7413 / 24$	24	12	8 A	bd
$7413 / 48$	48	12	3 A	bd
7413	48	24	3 A	bd
7508	$12 / 24 / 48$	$12 / 24$	8 A	abd
	$80 / 120$			

$a=$ primary/secondary with galvanic separation.
d = switch mode
DC/AC converter type 7804: Input 12 V DC, output $220 \mathrm{~V} \mathrm{AC}, 90 \mathrm{VA}, 120 \mathrm{~Hz}$

We also supply

\star power supply units from 220 V AC mains operation, with output voltages 50 mA DC to 10 A DC chargers for nickel cadmium and lead batteries.

Ask for our catalogue

7RASEGt
 electronia

601 Fredrikstad NOR 17516

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and. you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.

> Yu could do with a Helper on your test bench.

Please Use Capital Letters
circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

The New FM/AM 1000swith Spectrum Analyser-we call it the SUPER=S
A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope, tone generator, deviation meter, modulation meter, signal generator, wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor

Postage will be paid by Licensee
\square

BUSINESS REPLY SERVICE
WIRELESS WORLD,
PRODUCT REPLY SERVICE, 429 BRIGHTON ROAD, SOUTH CROYDON, SURREY CR2 9PS

Enquiry Service for Professional WIRELESS WORLD Wireless World, December 1980 WW 072 Readers lease arrange for me to receive further details of the produc ts listed, the appropriare space provided.
 Name . .
 Name of Company
 Address.
 Telephone Number
 | PUBLISHERS |
| :--- |
| USE ONLY |
 Position in Company
 \qquad
 \qquad
 \qquad
 Wireless World:
 Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to

Subscription Manager,
IPC Business Press,
Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH, England

Enquiry Service for Professional Readers ONLY.	WIRELESS WORLD . Wireless World, December 1980 WW 072
WW.... WW WW...	Please arrange for me. to receive further details of the products listed,
ww.... ww.... ww...	space provided.
WW.... Ww.... Ww.	Name
WW. ... Ww . . . Ww. .	Position in Company
WW.... ww.... ww.	
ww ww.... Ww.	Name of Company.
WW . . . Ww. . . . ww.	Address
WW.... Ww.... ww.	
WW . . . WW. ... Ww.	
ww.... ww.... ww.	Telophone Number
WW. . .. WW.... Ww	
WW.... WW.... Ww..	Nature of Company/Business
WWW ... WW.... Ww.	No. of employees at this establishment
WW Ww.... Ww.	
Ww. ... Ww.... ww	
WW.... WW ... WW	VALID FOR SIX MONTHS ONLY

Wireless World Subscription Order Form Wireless World, December 1980 ww 072

UK subscription rates 1 year: $£ 10.00$	USA \& Canada subscription rates Overseas 1 year: $£ 13.00$

Please enter my subscription to Wireless World for 1 year
I enclose remittance value. IPC BUSINESS PRESS Ltd.

Name...
Address

OVERSEAS ADVERTISEMENT AGENTS

Hungary Mrs. Edit Bajusz, Hungexpo Advertising Agency, Budapest XIV, Telex: Budapest 22-4525 INTFOIRE

Italy Sig, C. Epis Etas-Kompass, S.p.a. Servizio Estero, Via Mantegna 6 ,
20154 Milan - Telephone 347051 Telex: 37342 Kompass

Japan Mr. Inatsuki, Trade Media - IBPA (Japan), B212 Azabu Heights, 1-5-10 Roppongi, Mina

United States of America Ray Barnes, *IPC Business Prets 205 East 42 nd Street New York, NY 10017 -Telephone Mr. Jack Farley Jnr., The Farley Co Suite 1548,35 East Wacker Drive, Chicago, Illinois 60601 - Telephone : (312) 63074

Mr. Victor A Jauch,
Elmatex International
P.O. Box 34607
P.O. Box 34607 ,

Los Angeles Calif. 90034 U.S.A. Telephone: (213)
Telex: 18-1059.
Telex: $18-1059$.
Mr. Jack Mentel, The Farley Co., Suite 605 , Mr. Jack Building, Cleveland; Ohio 4415Telephone: (216) 6211919
Mr. Ray Rickles, Ray Rickles \& Co., P.O. Box 2008, Miami Beach, Florida 33140 - Telephone: (305) 5327301 Mr. Jim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E., Atlanta, Georgia
30305. Telephone: (404) 2377432 3030. Telephone: (404) 237.7432
Mike Loughlin, IPC Business Press, Mike Loughlin, IPC Business Press,
15055 Memorials, Ste 119, Houston, Texas 77079 -Telephone: (713) 7838673

Canada Mr. Colin H. MacCulloch International Advertising Consultants Ltd 915 Carlton Tower, 2 Carlton Street, Toronto 2-Telephone (416) 3642269
*Also subscription agent

WIRELESS WORLD DECEMBER 1980
 The New Scopex 14ロ-ィ

A dual trace 10 MHz sensitivity oscilloscope incorporating all the latest high technology developments to bring you all these outstanding features as standard.

- $10 \mathrm{~cm} \times 8 \mathrm{~cm}$ display.

2 mV sensitivity on both channels.

- Add and invert facility.
- Probe compensation.
- Push button X-Y.

Trace locate.
10MHZ (-3dB) over full display
Complete with probes.

At a price of $£ 230.00+$ VAT.
Ensures British leadership in the low cost hig performance oscilloscope market. Distributors required in certain countries

$\overline{\mathrm{W}} \mathbf{W}$ - O8I FOR FURTHER details

B4,61A movesto F3,115

or if you haven't got a pocket edition of the current
Geographers' A to Z of London with you: Dorset House, Stamford Street, S.E.
moves to Quadrant House in Sutton, Surrey.
This is the new headquarters of our parent compo IPC Business Press-and our new address as from 1st December

It's a brand-new, purpose-built tower block of twenty storeys linked to a low-rise block of seven, and it's situated right by Sutton railway station. The environment is nice and the facilities are impressive: our new telephone system is one of the most modern in the country and callers will receive just about the fastestanswering service they've ever had. This is only one way in which we hope our move will be of benefit, not simply to us, bulto everyone who Dorset House, Stamford Street, S. E. 1.

Welook forward to seeing or hearing from you at our new address, so please make a note in
your diarynow:
your diarynow.

wireless

world moves on
10 November 1980 to
Quadrant House, The Quadrant
Sutton, Surrey SM2 5AS
Tel: 01-661 3500 Telex: BisprsG 892084

\begin{tabular}{|c|c|c|}
\hline \& \&

\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
SCOPES
\qquad DUAL TRACE \qquad

\qquad

${ }^{\text {f170.00 }}$ \qquad
물힝 \qquad
\qquad

 \qquad
\end{tabular}}

\hline \& \multicolumn{2}{|l|}{}

\hline \multicolumn{2}{|l|}{} \&

\hline \multicolumn{2}{|l|}{} \&

\hline \multicolumn{2}{|l|}{} \&

\hline
\end{tabular}

ww - 038 FOR FURTHER DETALLS
 Increctible Price!!!

World-beating Oscilloscope Offers Electronic Brokers

Electronic Brokers Ltd., 61-65 King's Cross Road, London WCIX 9LN. Tel: 01-278 3461. Telex: 298694 Hours of Business: 9 a.m. -5 p.m., Mon.-Fri. Closed lunch $1-2$ p.m.
Add 15% VAT to ALL PRICES

Carriage and Packing charge extrá on all items unless otherwise stated.

PRINTERS

CENTRONICS 101A

Heavy Duty Matix Printer with 64 ASClI upper
case character set. 165 cos operation. 132 print
 matrix, paraliel input.
e750.00

ASR 33 TELETYPE

 set. 1120 boud operation, even paritye keyboard
choict

GE TERMINET 1200 RO Printer, 80 col-

HAZELTINE THERMAL PRINTER, 80 col-
umn 30 cpo sient ROL printer with

TALLY 1602 MATRIX PRINTER, Parallel | Input, Upper /lower case, Tractor feed as as |
| :--- |
| new |
| ne9..00 |

TERMIPRINTER 7075 RO Impact Printer, Upper/lower case, pin-feed, RS232 $\underset{£ 275.00}{ }$ TEXAS 725 Portable Terminal with acousTEXAS 733 ASR Terminal $\quad £ 1375.00$

LOW COST PRINTER OFFER Toletype 33 printer mechanism including case
butr
Asc keyboard or electronics, 64 uper case ASCll 10 cosp Pifeed platen, ideal for the telee
tonic hobbyis.

MISCELLANEOUS

DIGITRONICS P135 paper tape punches
35 cps. Solenoid device with $27 V D C$ coil FACIT 4070 Paper Tape Punch $\begin{gathered}\text { E675.00 } \\ \text { E675.00 }\end{gathered}$

HEWLETT PACKARD PROGRAMMABLE CALCULATOR MODEL 9830A
8k Memory. Extended $1 / 0$ RoM. String Varii.
abbes RoM 4. Peripheral interacaes (1 serial.

MONITORS

EMI MONITOR

15in Diagonan Tube Integral Power Supplies
accepis composite or searate

BALL MIRATEL TTL15
Sin Diagonal green phospher tube. Integral

NEW CATALOGU JUST OUT Send for FREE COPY

NEW ASCII KEYBOARDS -

 NEW LOW PRICES Ksorporating seperatat numeric / cursor conorra pad and installed in in ustom-bivilt steel enclososure with fextued bule enamel. finish Itidean toosure
 $\substack{\text { Mase } \\ \text { ond } \\ \text { toait }}$
 KB756MF As above, fitted with metal mounting

 KB756MF
KB702 Steel enclosure for KB
£156 or
KB7
E156MF

 plete eveth PET itterface, built-in power supply
and steel enclosure

$£ 145.00 £ 172.50$ | nd steel enclosure |
| :---: |
| Discounts available for quantities |
| $£ 145.00$ |
| 1020 |

90-DAY WAR RANTY SECOND-USER PRINTERS AND TERMINALS ARE COVERED BY FULL 90-DAY PARTS AND LABOUR WARRANTY UNLESS OTHERWISE STATED

Electronic Brokers Ltd., 61-65 King's Cross Road, London WC1X 9LM. Tel. 01-278 3461. Telex: 298694 Hours of Business: 9 a.m. 5 p.m. Mon. Fri. Closed lunch 1.2 p.m. Carriage and Packing charge extra on all items unless otherwise se stated lit
Add 15% VAT to All. PRICES W - 042 FOR FURTHER DETAILS

WIN THE MOST EXPENSIVE BREADBOARD IN THE WORLD AND OTHER PRIZES

ON AP STAND NOS D10 AND E10 AT BREADBOARD 80

BREADBOARD 1980 NOV $26-$ Nov 30 Oth ROYAL HORTICULTURAL HALLS ELVERTON ST. LONDON.

SUPERSTRIP SS2 THE BIGGEST SELLING BREADBOARD IN THE WORLD

When you buy a SUPERSTRIP BREADBOARD you buy a breadboard to last you for ever, we give you a LIFETIME guarantee. SUPERSTRIP is the most used breadboard by hobbyists, professionals and educationalists because it gives
you more for you money... With 840 contact points SUPERSTRIP accepts all you more for you money ... With 840 contact points SUPERSTRIP accepts al each SUPERSTRIP will take up to nine 14 -pin DIP's at any one time. You should only buy a breadboard once so buy the biggest seller with a lifetime guarantee.
SUPERSTRIP SS2 923252 PRICE INCL VAT $£ 9.78$

DIP-DIP-DIP-DIP-DIP JUMPERS
AP DIP JUMPERS ARE THE LOWEST PRICE IN THE UK

EX-STOCK DELIVERY
5 STANDARD LENGTHS
6, 12, 18, 24, $36^{\prime \prime}$
WITH 14, 16, 24, 40 CONTACTS
FULLY ASSEMBLED AND TESTED
TEGRAL MOULDED ON STRAIN RELIEF

TEST-CLIP TEST-CLIP
 Clip an AP TEST-CLIP over an IC and you immediately bring up all the leads from the crowded board into 22 NEW AP TEST-CLIPS TO PICK RROM
examples: TC 14923695 £2.76 $\begin{array}{llll}\text { TC } 14 & 923695 & £ 2.76 \\ \text { TC } 16 & 923700 & £ 2.91 \\ \text { TC } 24 & 923714 & \mathbf{8 5} 50\end{array}$ $\begin{array}{lll}\text { TC } 40 & 923722 & \text { £ } 12.88\end{array}$

We can supply DIP, SOCKET, PCB, CARD-EDGE in any style any quantity ask
for free catalogue.

- LINE BY LINE PROBEABILITY

SINGLE-ENDED DOUBLE-ENDED all prices $1-9$ off. Huge discounts for quantity CONTACTS \mid CONTACTS \square \begin{tabular}{l}
$£ 2.1$

$£ 2.3$

$£ 3.4$

£5

f.

\hline

$12^{\prime \prime}$ \& $18^{\prime \prime}$ \& $24^{\prime \prime}$ \& $36^{\prime \prime}$

$£ 2.21$ \& $£ 2.31$ \& $£ 2.43$ \& $£ 2.63$

$£ 2.45$ \& $£ 2.58$ \& $£ 2.66$ \& $£ 2.97$

\& \& \&

\hline
\end{tabular}

 BASIC INTEGRATED CIRCUIT STARTER PACK
Theic Starter Pack includes two terminal strips, wwo distribution striips and a spacer/supports strip already in an EBBo tray ready for use. A free project
IC-1 Starter Pack $£ 4.24$
BASIC DISCRETE COMPONENT STARTER PACK
BASIC DISCRETE COMPONENT STARTER PACK
DC-1 Discrete Starter Pack $£ 4.67$

All prices shown are recommended retail incl. VAT
In difficulty send direct, plus 50 p \& P
In difficulty send direct, plus 50 p P \& P.
Send $S . A . E$. for a free copy of colour catalogues
Send S.A.E. for a free copy of
detailing our complete range.
AP PRODUCTS, PO BOX 19, SAFFRON WALDEN, ESSEX, (0799) 22036

Wireless world december 1980
АCOMPUIER WAREHOUSE

* RAM AND EPROM STAR OFFERS *

2716 Single 5 v rail EPROMS 2716 Three rail EPROMS....

2708 EPROMS.
$411616 \mathrm{k} \times 1200 \mathrm{~ns}$ RAMS 8 for
TELETYPE ASR33
I/O TERMINALS
ICL TERMIPRINTER

$\mathrm{f} \mathbf{£ 2 3 5 + \text { + CAR }}+$

EOUIPMENT CASE

SOFTY

 Writer or featurues.e.ver: A host $\underset{\text { PSU } 20+\text { VAT }}{\mathbf{f 1 1 5}+\text { VAT }}$ PSUE20 VAT
You'II never regret buying a
SOFTY!

RAND NEW
BRAND NEW
8" FLOPPY DISK DRIVES SHUGART SA800 f225.00 + carr + VAT SHUGART SA801 $245.00+$ carr + VAT Following the recent "SELL OUT" demand for our $5 V$
3 amp P.
.U. we have mangeged os secure alarge uan.

5imeminitutit
 SEMICONDUCTOR
\qquad

MUFFW FANS
Full range of T.T.L. ex-stock.

KEYBOARDS
\star LOW PRICE CHASSIS \star हivilimatis
4 aji

$\mathbf{f} \mathbf{2 7} \mathbf{. 5 0}^{\text {+ P.P. } £ 1.85}$

HEWLETT PACKARD MICROWAVE SWITCH type 33124A SPST £140.asch. Reduction for quantity. ATTENUATORType 8493A. 3 db up to E 25 each 12.4 GHZ
TANDY TRS 80 Level 2 Microprocessor System comprising of Display, Keyboard with processor and 16 K memory: Expansion Interface with 32 K Tandy Printer. manuuls, books, disks, etc- EXCEPTIONAL CONDITION. Will separate THE LOT £1,600
INFRA RED IMAGE CONVERTER Type 9606 (CV 144)
 $£ 12.50$ each

GARRARD DIRECT DRIVE TURNTABLE MOTORS
 EX-MINISTRY SOLID 400 HTATE

READ ALL ABOUT IT - all the latest on home entertainnente equipment and ideas in...
HI FI YEARBOOK AND HOME
ENTERTARBMENT 1981
Published again in November, this new 1981 edition in larger magazine size means more comprehensive coverage of the whole range of home to video recorders and from radios to electronic organs. Backed by authoritative articles on developments in th plus details of stockists, Hi Fi Yearbook and Home Entertainment 1981 is essential reading for enthusiasts and buffs.
Available from leading newsagents and bookshops from 1st November 1980. Price $£ 3.00$

If you have difficulty in obtaining your copy order direct from the
publishers @ $£ 3.50$ inclusive.
publishers @ £3.50 inclusive

ORDER FORM

To: General Sales Manager, Room 205, Quadrant
House, The Quadrant Surton Surey, House, The Quadrant, Sutton, Surrey, SM2 5AS.

Please send me.
Yearbook and Home Entertainment 1981 @ £3.50 including postage and packing. Cheque/postal orde
should be made payable to IPC Business Press Itd.
Lamanem Registed in fgland No.677128.

ELECTRO-TECH COMPONENTS LTD.

Wireless world december 1980

JOYSTICK CONTROLS

FLIGHT LINK CONTROL LTD.
BRISTOW WORKS, BRISTOW ROAD
WW-115 FOR FURTHER DETAILS

Appointments

Advertisements
accepted up to 12
noon Monday, De-
cember 5th, for Jan
uary issue, subject to
space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 12.00$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $\in 2.00$ per line, minimaressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.
PHONE: Eddie Farrell, $01-661$ 3500, Ext. 8158 .
PHONE: Eddie Farrell, 01-661 3500, Ext. 8158.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Join us in the forefront of technology

GOMPUTER 8
 ELECTRONIC
 OPPORTUNITIES
 £5,000-£20,000

From Bahrain . to Bognor
Mini-Micro-Digital Hardware/Software Ability
100 of interesting and
progressive opportunities at all
Design - Tevest - Sales
Service - Support
Most UK areas - some overse
Ring MIKE GERNAT
Ring MIKE GERNAT
076 -384 676 (24 hours)
ELECTRONIC COMPUTER
AND MANAGEMENT
A48/150 High Street
Barkway, Royston,
SG8 8EG

Dlectronics R\&D

$\mathbb{T} \mathbb{N}$
 SENIOR ENGINEER

Radio Links Maintenance
Salary $£ 11,406$
Independent Television News Limited has a vacancy for a Senior
Engineer in
The successful applicant would be a member of the small team responsibe
extensive R / T Networks. This is a rapidly expanding field, following extensive
the intoroction of Electronic News Gathering to iTN. Previous
maintenance experience with RF systems is essential.

The successful applicant would be based at ITN House in Central generous pension scheme and free life insurance.

Telephone 01-637 3144 for an application form quotig vacancy number 30302.

A challenging and full career in Government Service.
Minimum qualification - HNC
Starting salary up to $£ 6,737$ (under review) lease apply for an application form to the Recruitment Officer (Dept. WW9) H.M. Government Communications Centre, Hanslope Park, Milton Keynes MK19 7BH.

Take your pick

HF-VHF-UHF-

Microwave Optics \& Acoustics

ENGINEERING OPPORTUNITIES

COMMISSIONING ENGINEER

 The position involves travelling within the U.K. and will
take tenn ind
company car is ror rovide wide variety of industries. A Company car is provided.

 Previous expereienc. of tiving sisessential, preferably to

$$
\begin{aligned}
& \text { Telemotive is a good employer. We look only for above ayerage } \\
& \text { perssonnel, and this is reflected in the conditions of employment } \\
& \text { offered. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Please apply in writing, glving details of previous experience and } \\
& \text { training, to:- }
\end{aligned}
$$

telemotive Uk lte

WEVE MOVED

NOTICE TO CLASSIFIED ADVERTISERS RE-CHANCE OF ADDRESS
Please note that Wireless World has now moved to Sutton, Surrey and all classified advertisements should be sent to the following address:

Classified Department
WIRELESS WORLD
Quadrant House, The Quadrant Sutton, Surrey SM2 5AS Tel. 01-661 3500, Ext. 8158 telex: 892084 BISPRS G wireless world

COMPUTER TECHNICIAN-T2
A new post in our Computer Centre for maintenance of terminal and
periipheral equipment of all kinds, clearing faults wherever possible,
et.
Salary: T2 £3990 to $£ 4476$
For further details contact: 'Personnel,' The Polyrechnic Wolver-
hampton, The Molineux, Molineux Street, Wolverhampton, hampton, The Molineux, Molineux Streat, Wolverhampton,
WV1 1SE. Tel. W'ton $710654-24$-hour ansaphone.

INNER LONDON EDUCATION AUTHORITY LEARNing Materials service television centre VIDEOTAPE ENGINEER (ST3)
The Learning Materials Service produces teaching programmes in
colour for ILEA schools and colleges, many of which are marketed col
throughout the U.K. and abroad. There is a Television Studio and
mobile mobile unit and a film unit. The programmes are recorded in the
master control section on broadcast standard videotape (CCIR formats
A and CC) This section carries master control section on broadcast standard videotape (CCCR formats
A and CC. This section carries out all editing and post-production work
and provides large scale duplication on a variety of helical videocass and provides
ente
A
A vacancy has arisen in this section, which .onsists of four senior
engineers. Applicants will be expected to have good operational engineers. Applcants.
experience of videotape, with a thorough understanding of th
technin technical features, and to have appropriate technical qualifications.
general grounding in colour television theory is essential general grounding in colour television theory is essential. Th
successful candidate will be expected to undertake maintenance of th brcadcasting and tape machines and dsssociatedeequiainment, as well a
the operational functions. Some overtime is required.
Salary within the scale $£ 7904$ to $£ 8498$.
Application forms from EO/Estab., 1C Room 365, The County Hall,
S.E.1. Telephone No. $6337456 / 8848$.

Radio Communications Electronics Engineers and Software Designers

Mid-Sussex-S.W. London Salaries up to $£ 8,000$ To join our expanding R\&D Laboratories covering a wide range of R.F
spectrum, from L.F. to V.H. seceivers tor marine and land-based unse, include transmitters and
movaids and radio monitoring remote computer-controlled systems. Electronics Engineers should have experience in transmitter or receiver
design, analogue or digital circuit design, microprocessor applicativer Software Designers should be experienced Programmers with an
interest in interest in control, signal processing or navigational software. Attractive salaries are complemented by excellent prospects and
generous benefits. Contact: David Bird, Redifon Telecommunications Limited Whdsworth, London, S.W.18. Phone: 01-87 7281 (reverse charges).

STRATHCYD:

GLASGOW Sub-Region
ELECTRONICS TECHNICIAN

 Nomen

 by 3rd December, 1980. Diractor of Manpowar Servicos

Increased home and export orders for our broadcast TV products mean that we are ooking widely to recruit staff to fill new vacancies and others created by promotion of engineers who have been with us some time

SYSTEMS ENGINEERS - TELEVISION

Experienced engineers are needed to work on design and project management of Outside Broadcast vehicles and television studios. This is an opportunity for engineers to become involved in projects from their initial design concept, through manufacturing to delivery and installation
Our custom built systems require a high degree of customer contact at engineering level, trom ue initial design stage to the necessary training of operational staff on completion of the contract, both within the UK and
overseas.

You should have a knowledge of TV studio engineering gained from experience in this type of work or from experience in the operational side of television

DESIGN AND DEVELOPMENT ENGINEERS - VIDEO

An experienced engineer who will be involved in the design of studio products, including a new range of colour cameras, using the very latest analogue and digital techniques. You will have the oppo
made in volume production, fulfilling the high technology requirements of the ' 80 s .
We are looking for engineers who are qualified to degree or HND level and who have at least four years' experience in the design of electronic equipment, with some knowledge of video engineering and microprocessor techniques

TEST ENGINEERS

We require engineers at intermediate level to assist in the manufacture of our new range of products for the
Broadcast studio television market. Broadcast studio television market
You need to have an up-to-date knowledge of digital and linear circuit techniques gained from experience working on broadcast television, or similar sophisticated'products, and be capable of faultfinding down to component

We are a young, successful Company, well known in international television circles, operating from our modern purpose-built factory in Andover. Salaries offered are very competitive, and supplemented by generous holidays, free life and health insurance, pension scheme, subsidised meals and relocation expenses

PLEASE WRITE GIVING FULL DETAILS OR PHONE JEAN SMITH AT THE ADDRESS BELOW FOR AN APPLICATION FORM.

Appointments

Technicians in

Communications

GCHO We are the Government Cheltennications Headquarters, based at Cheltenham. Our interest is R \& D in all types of modern radio communications - HF to satellite - and their security THE JOB All aspects of technician support to an unparalleled range of communications equipment, much technology
LOCATION Sites at Cheltenham in the very attractive Cotswolds and elsewhere in the UK: - ofportunities for service abroad

PAY Competitive rates, reviewed regularly Relevant experience may count towards TRAINING We pay. Pro new skills and experience
QUALIFICATIONS You should have a TEC Certificate in Telecommunications, or accept HOW TO APPLY For full details on this information on our special scheme for those lacking practical experience, write now to
Robby Robinson. Recruitment Office, - GCHO, Oakley, Priors Road, Cheltenham Glos. GL52 5AJ. or ring
$0242-21491$ 0242-2149 ext 2269.

@ PIONEER require
 FIELD SERVICE ENGINEER CAR AUDIO

c. $£ 7,000+\mathbf{C a}$

Applicants should hold a C. \& G. qualification in Radio and T.V. Electronics or Telecommunications or an H.N.C. in Electronics. It is envisaged that the applicant should have up to
5 years' experience, the specialist knowledge required to 5 years' experience, the specialist knowledge required to
analyse and solve car suppression problems and have a wide, general knowledge of car audio equipment, together with a methodical approach to work and the ability to deal in a
friendly, polite way with people. You should hold a clean friendly, polite
driving licence.

BENCH SERVICE
 ENGINEERS

Applicants should hold C. \& G. Radio and T.V., Electronics Technician or equivalent certificate with a minimum of two years' experience in the Audio field. Alternatively, five years of
relevant experience with sound knowledge of electronics is relevant exp
Salary up to $£ 7,500$ per annum, according to age and experience.
Luncheon vouchers, four weeks' annual holiday and pension scheme.
For further information, do not hesitate to contact:

Mrs. C. A. Burridge
PIONEER HIGH FIDELITY (GB) LTD.
Pioneer House, The Ridgeway, Iver, Bucks.
Tel. Iver (0753) 652222

THE POLVTECHNIC
WOLVERHAMPTON TV SERVICING TECHNICIAN (T3/4)
 develapment. Addritional training may be tion.
Solar: $: 4581$ to 105784
Sal ais from: -Parronnal

Communications Engineers and Technicians. Have you considered a career in Technical Publicity?

Our Central Publicity Department, based in the pleasant Berkshire town of Wokingham, has opportunities for Communications Engineers \& Technicians (Male or Female) who wish to move into technical publicity by joining a team involved in the production of written copy for a wide range of sales literature and technical articles. Even if you have never considered writing as a career, providing you have experience in communications, either data or radio, and an ability to express yourself clearly, we would very much like to hear from you. Those people currently employed in telecommunications services or the electronics industry or those abouttoleave the HM forces would find the work varied, stimulating and creative. A

ertain amount of travelling will be involved for which a generous mileage allowance is payable.
Excellent prospects existor promotion to more Exior positions.
We can offer staffexcellent salaries. Group ension scheme. free life ascurannce. five weeks annua holiday and relocation expenses where applicable:
This is your chance to join the most successful
eectonics Company in the U. K. Apply w writing lectronisc Company in the e. K . Apply in writing, or
elephone.giving brief deatils of age. experience and elephone.giving bit
qualificaraionsto:
Manaegr Group Per Manager Group Personnel Services.
Racal Group SericesLLd Western Road. Bracknell. Ber
Tel: Bracknell. 10344) 12444 Ext. 149

ENGINEERING OPPORTUNITIES Samuelson Sight \& Sound Ltd. is a well established firm, which in the past few months has found, due to increasing business the need to take on both Video and Audio engineers.

VIDEO ENGINEERS
Well proven service background in all aspects of video, including television, television camera, video tape recorder both VHS and U-Matic rmats.
Salary negotiable dependent on experience.

AUDIO ENGINEERS
Experience in all forms of audio equipment including sound mixing consoles, amplifiers, talk back systems etc. However if you have a good electronics background this would be onsidered.
Salary negotiable dependent on experience.
Please apply in writing, giving details of previous experience and training to:-

Mr. R.T.Morgan (Service Manager)
Mr. R.T.Morgan (Service Manage Samuelson Sight \& Sound Ltd. London NW2 6PO
TOP JOBS IN ELECTRONICS Posts in Computers, Meacal,
Comms, etc. ONC to Ph. D. Free Phone or write: BUREAUTECH, AGY, 46 SELVAGE LANE,'
LONDON, NW7. 01-906 ${ }^{\text {LON }} 025$.

SALARIES UP TO

£13,000

CURRENT VACANCIES INCLUDE
DESIGN ENACANERS to work on counter measures for secure computers i.e.
equipt to detect interference from voice racio telex etc., up to $1: 3 \mathrm{BHz}$. Surrey to Ef13.000.
VERSAT
VERSATILE YOUNG ENGINEERS
 DESIGN ENC Coast to $£ 10,000$.
 RF ENGINEERS \& DIGITAL ENGINEERS for very advanced emergenc
serices SEVELOPMENT ENGINEERS Oct's for cont equipment. Rural Cheshire to $£ 8,000$
DEVELOPMENT ENGINEERS to

 digital modulus tor autorovitive industry. Rural Gloucs. ces9.000.
COMPUTER ENGINEERS Vacancies throughout U.K. in tech, support, field service, permanent site and systamciest.t. Salagrios range from exceptionally good
to diabolical - but according to location and type of equioment. WANTED URGENTY - ANY HARDWARE OR SOFTWARE ENGINEERS, TEST
ENGINEERS, SERVICE ENGINEERS, TRIALS ENGINEERS. For further details, please contac

Charles Airey Associates
8 Hammersmith Grove. London W6 OMA. Tel: 01-741 4011

Appointments

GOVERNMENT OF DUBAI

DUBAI RADIO AND COLOUR TELEVISION TELEVISION ENGINEERING DEPARTMENT TRANSMITTER ENGINEER
A vacancy exists for one Television Engineer to augment an existing team which is responsible for the maintenance of VHF and UHF medium and high power transmitters.

Candidates should be experienced in the broadcast field and be familiar with routine testing procedures to ensure the continued good performance of equipments unde be familiar with the operation, testing and setting up of such equipment. The maintenance of a medium power FM stereo transmitter is also involved

Only candidates with some years of proven experience in broadcast engineerin need apply
The contract will be for two years and full details of conditions of service may be obtained from
$0.1-6296203$.

The salary scale for this post will be $£ 12000-£ 14000$ Sterling per annum tax fre depending on experience.

Applications, which will be treated in strictest confidence should be sent accom panied by C.V. and UK telephone contact to:-
Chief Engineer,
Dubai Radio and Colour Television
c/o Falcon Television Productions,
7a Grafton Street,
London,
It is expected that interviews will be held in London in December

SL Exethotomew's Hopphan

FIELD SERVICE

 ENGINEER

 processor in in
advantage.
Salary will be on the scale $£ 4431$.
E5097 p.a.e., with initial placement E5097 p.a.
acording
perience.
Letters of application, stating full persosal details and the emames of two
referees, should be sent to Mra.

Surrey Education Committee

Brooklands Technical College
Heath Road, Weybridge, Surrey
DEPARTMENT OF TECHNOLOGY

Lecturer I-

Telecommunications /

Electronics

o teach TEC Cerificate Courses and C \& G 224. Industria experience and qualifioctions to HNC/ /FCC preferred. Ability to offer
Telephony-based subjects an advantage. Salary Scale: Lecturer I-£4683-£8055 plus $£ 213$ per annum London Fringe Are
Allowance Allowance
Commencing salary dependent upon qualifications and experience.
Uurther dotails and application forme cases.
returned within 10 days after publication date.

Experienced T.V. aerial SYSTEMS ENGINEER required to work from S.E. London.
Greanwich Cablevision Limited, 307 Plumstead High Stroot, London SE18 1JX tel: 311-3466

DODolby ELECTRONIC TEST ENGINEERS

We manufacture and market audio noise reduction equipment which is
used by major recording companies; recording studios, the film Uesed by maijurer recording companies, recorrding studios.
industry and broadcasting authorities throughout the world. We need experienced Test Engineers to ioin a dedicated team who are We nead experienced
proud to o evorld lea.
reduction equipment.
reduction equipment. Those with practical knowledge of electronic testing and rapic
trouble-shooting ability can enjoy varied and interesting work and high rates of pay.
Telephone TONY HILL 01-720 1111
DOLBY LABORATORIES INC.
346 Clapham Road, London, SW9 9AP

COMPUTER \&
DIGITAL FIELD
ENGINEERS
A Place on our specialist register
ensures wide exposure to the right opportunities with the mini We provide -

* Expertise of ex Field \star Continuous update of your circumstances - we don't file
and forget! - Gend forget! \# Genuine 2 2-hour service
answering machines. \# No promises we can't keep. \star Countrywide contacts.
Ring now for a free Registration form-
$01-464714$, ext. 502
LOGEX

Broadcasting Engineers

Saudi Arabia up to £6,000 to £16,000
EDOK-ETER are a major international civil,
telecommunications and defence engineering compommunications and defence engineering
company with rapidy developing worldwide
interests Our headquaters is interests. Our headquarters is in A Athens.
One of our more important undertaki the construction, commissioning and long-
term operation of the new Saudi Arabian HF term operation of the new Saudi Arabian HF
and MF broadcasting network based on multi-megraatt MF transmitters and HF or
microwave programme and telecommunication links.
We require several grades of Broadcasting
Engineers to take full responsibility for the Operation and mainterance of all the radio
and electronic equipent and electronic equipment of a new station.
Successful candidates aged up to 50 mu Successful candidates aged up to 50 must
have a relevant Degree and radio engineeering e

We have the following vacancies in our Network and Service Planning Department based at our Engineering Headquarters near Winchester:-

Engineer

Network Planning
(Ref: WW/524cc)
Under the general supervision of a Senior Engineer you will be required to progress
modifications. and extensions to the IBA vision, sound and telemetry networks. The work modicications.ant extensions to the IBA vision, sound as includ
You should have a degree in electronic engineering and at least two years' experience in microwave systems planning and commissioning. Alternatively, experience of Post Offic practice or communication methods in either broadcasting or private industry may be
acceptable.

Senior Engineer
Network Planning (Ref:WW/523cc)
You would be required to plan and supervise the implementation of communication
facilities for the current and future needs of the Authority. The work will involve th control and provision of Post Office Services and the planning, installation and control and provision or Post office Services and the planning, You should be qualified to degree level with several years' experience of transmission
systemis both systems both line and radio. Familiarity with current video and audio transmission
techniques is essential and applicants should have practical experience of microwave link design and operation.
Both posts will involve travelling with periods away from base, therefore, a current driving
licence is essential. Applicants (male or female) will be required to climb and work on tall
structures.
Depending upon qualification and experience, the commencing salary will be on a range
which rises to $£ 9,603$ per annum for the Engineer post and to $£ 11,040$ per annum for the which rises to $£ 9,603$ per annum for the Engineer post and to $£ 11,040$ per annum for the Selocation expenses will be paid where appropriate.

IBA

INDEPENDENT
AUTHORITY
Please write or telephone for an application form, quoting the appropriate reference number, to Christine Gossling, IBA, Crawley Court, Winchester, Hampshire SO21 2QA.
Telephone Winchester 822270.

Appointments

```
Telephone Winchester 822270,
(772)
```

experience, preferably in broadcasting, or
alternatively in manufacture and installation alernatively in manufacture and insta
or in
Salmery is Services communication. Salary is up to $£ 16,000$ p.a. tax free, depen-
ding on qualifications and experience. Benefits are comprehensive covering single fur-
nished accommodation, medical treatm nished accommodation, medical treatment,
generous home leave and air fares and
accident insurance cover. accident insurance cover.
Please write Please write, quoting reference 903 , giving
full details of previous experience, emplo full details of previous experience, employenclose a recent photograph to: The Person
nel Manager, EDOK-ETER Group, 83 nel Managor, EDOK-ETER Group, 83
Buckingham Palace Road, London
SW1W OOJ. Tel: $01-8286814$.

Appointments
WIRELESS WORLD DECEMBER 1980

ELECTRONIC ENGINEERS

looking for a different image?

Competitive Salary + Car In the field of Electronics, few areas offer such growth oppor-
tunities as that of Computing. Philisp Data Systems is a division of
Philips Business Systems. Philips Business Systems, the pacesetting group that manufactures
and markets one of the widest ranges of advanced business systems and markets one of the widest ranges of a avanced business systems
and equipment. We are looking throughout the UK for Customer
Engineers, male or female, who wish to be part of that growth. Eng you are experienced in dealing with customers' problems,
skilled in electronics/electro-mechanics, then Philips will provide skilled in electronics/electro-mechanics, then Philips will provide
you with the training necessary to enter this technically exciting and chailenging field.
We offer excellent conditions of employment, a competitive
initial salary, which will be reviewed on completion of your first nitial salary, which will be reviewed on completion of your first
6 months training period. Naturally, a company vehicle will be 6 months

Ifou believe you have the ability/experience needed to take on This image, then why not telephone Alan Bowden, Senior Personne
Dfficer, on 02065115 or write to him at Philips Data Systems, Elektra
House, 2 Bergholt Road, Colchester Essexco
(\#)
Simply years ahead
PHILIPS

JUNIOR DEVELOPMENT ENGINEERS
 ELECTRONICS

John Player and Sons, a leading manuracturer of tobacco products, ofrer the eponitinity to young eleatronics en
practical experience in in industrial electronics.
Vacancies exist for work in the Machinery Evaluation Section where
new generation cigarette making and packing machines are under.
 latest technologicial advancesern incluctiong micicroprococssors
The successsul applicants will undergo a period of familiarisation. look
atter specific machines during the evaluation period, be involved in the
 ultimaiely in the training of or
machines on the procouction floor
We are looking for men or women who are qualified to HNC or
equivalent and who have wwo years' experience in one or more of the following areas:
a) eleatronic contro and logic circuits
b) process control sy

A knowledge of the tobacco industry is not essential.
We offer a starting salary of $£ 6,500$ per annum together with other
benefits associated with a large progressive company including rencoitis assoitatad with a airge proo
relcation asistance where applicalie.
Application forms cab be obtained by telephooning Notitingham (STD
Ob62 787711 , Extension 345 or writita

Loma Blayney

JOHN PLAYER \& SONS
NOTTINGHAM NG7 5PY
(790)

ELECTRONICS ENGINEER

CENTRAL SCOTLAND

 Apply tor appliation tom to:

When the ship comes home, why not settle down?

CHIEF ENGINEER RADIO AVONSIDE LIMITED

Applications are invited for the post of
Chief Engineer at the Bristol-based IndepenChief Engineer at the Bristol-based Indepen-
dent Local Radio station due to come on air in the autumn of 1981. The appointment should be made before the end of this year.
and the successful applicant will begin his or her duties next spring. The contract offered to Radio Avonsid the Independent Broadcasting Autiong areas with a possible adult audience in excess of and challenging engineering appointments within the ILR network and a high standard of administrative ability and technica experience is required
with the planning and setting up of the statio and will thereafter be responsible to the
Managing Director for all aspects of Radio
Avonside's technical operation and maintenAvonside sechnical operation and maintenp.a. is envisaged, subject to qualifications and experience.
Applicants should write to the Chairman Professor Glynne Wickham, at Radio Avonside Professor Glynne Wickham, at Radio Avonside
Limited, 4th Floor, Bush House, 72 Prince Street, Bristol BS1 4NU. The closing date 1st December 1980

serving a population of four million from the heart of Manchester
TRAINING and STANDARDS SUPERVISOR
to instruct technical and programming staff in operation of complex
station equipment and to organise teaching of editorial, management station equipme
and related skills.
We want to hear from candidates with an engineering background, with ad
works.
Salary - $£ 8,000-£ 10,000$ according to experience
Write to:

Colin Walters Programme Controlle rogramme Controller Piccadilly Radio P.O. Box 261 Manchester M1 4 AW

CHELSEA COLLEGE
Univerait of London DEPARTMENTO LIECTRONICS ELECTRONICS
TECHNICIAN Equired for Electronics Workshop sevin

$$
\begin{aligned}
& \text { UNIVERSITY OF GLASGOW } \\
& \text { DEPARTMENT OF PSYCHOLOGY }
\end{aligned}
$$ DEPARTMENT OF PSYCHOLOG

ELECTRONICS TECHNICIAN

 Applications, giving detaits of age,
aualitictions and experience should be
be

 TEGHNIGIAN GRADE 5

 (804)

ELECTRONICS

ELECTRONICS TECHMICIAN

TESTERS, TEST TECHMIIANS,

assified

sis. we.

Please ado camriage and v.ar
P. HARrIS
P. HARRIS
ORGANFORD, DORSE BH166BR
O202) 765051

Classified

TICLES For SAL
TO MANUFACTURERS, WHOLESALERS \& BULK BUYERS ONLY Large quantities of Radio, T.V. and Electronic Compinents. RESISTORS CARBON \& C/F $1 / 8,1 / 4,1 / 2,1 / 3$. 1 Watt from 1 ohm to 10 meg . RESISTORS WIREWOUND. $11 / 2,2,3,5,10,14,25$ Watt. CAPACITORS. Silver mica, Polystyrene, Polyester, Disc Ceramics, Metalamite, Ce Pots, Stc. Clider Pots, Electrolytic condensors, Can Types, 'Axial, Radial, etc. Transformers, chokes, hopts, tuners, speakers, cables, screened wires, connecting wires, screws, nuts, transistors, ICs, Diodes, etc., etc. All at Knockout prices. Come and pay us a visit. Telephone 4452713 , 4450749 . BRŌADFIELDS \& MAYCO DISPOSALS 21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho Corner

THE SCIENTIFIC WIRE COMPANY	

AUCTION SALE

at GLOUCESTER INDUSTRIAL SALES \& AUCTIONS LTD., Eastington Trading Estate, Near Stonehouse, Glos OOs of Lots of Electronic Components, Test Gear including Oscillosit No 13
100s of Lots of Electronic Components, Test Gear including Oscilloscopess, Signal Generators, Computer Peripherals and Parts,
Vacuum Pumps, etc. Many Lots with NO RESERVES. Catalogues 50p each from G.I.S.A., Eastington Trading Estate, Near Stohehouse, Gloucester. Telephone No. Stonehouse 4118 Viewing: November 28 -December 4 incl.,. 9 a.m.- 4 p.m. (except Saturday and Sunday) and Morning of the SALE.

CIRCOLEC
THE COMPLETE ELECTRONIC MANUFACTURING SERVICE Let us realise all or any part of your project from prototypes to
production, from artwork design and componen sourcing through
assembly and test assembly and test to tinal quality assurance, packing and delivery.
We also provide a test, repair and modification service to suit your We also provide a test, repair and modification ser
individual ereuirement.
For competitive prices and fast turnaround contact:

CIRCOLEC, 1 Franciscan Road, Tooting, S.W. 17

MICROPROCESSOR SYSTEMS
nal hardware and softwar
hel you with
SmaLl yatct
Elaken. FAST TU
etails: Winston Pr
01-405 $4127 / 0960$.

ARTICLES WANTED	
WANTED! all types of scrap and REDUNDANT ELECTRONIC \& COMPUTER MATERIALS . with precious metal content	WANTED
	anglian industriål AUCTIONS We sell by auction, all radio and electronic components and equipment. Why not let us sell
TRANSISTORS \& PRINTED CIRCUITBOARDS TO COMPLETE COMPUTERS	your surplus and end of production materials. All entries must be received at least 21 days prior to sale. For entry forms or catalogue of next auction contact:
THE COMMERCIAL SMELTING \& REFINING Co. Ltd. 171 farring don road Tel: $01-8371475$ Cables: COMSMELT, EC1 Works: RECNNEY, Mr. LECEESTET	B. BAMBER ELECTRONICS 5 STATION ROAD LITTLEPORT CAMBS. CB6 10E TEL: (0353) 860185
	DEAD OR ALIVE
WANTED Test equipment, receivers, valves, transmitscrap, any quantity. Prompt service and cash. Member of A.R.R.A. 86 Bi M \& B RADIO Leeds LS1 4 SB 0532-35649	EQUIPMENT WANTED
	TO ALL MANUFACTURERS AND WHOLESALERS IN THE ELEGTRONIG RADIO AND TV FIELD
	BROADFIELDS \& MAYCO DISPOSALS Will pay you top prices for any large stocks of surplus or redundant components which you may wish to dear. Wo will cail anymhere in the United king 22 IOGEL LAME Aftor. office hourr 9587624
SPOT CASH paid for all forms of electronics equip ment and components.	
F.R.G. General Supplies 550 Kingston Road, London Tel: 01-404 5011 Telex: 24224 Quote Ref 3165	

WIRELESS WORLD DECEMBER 1980
CAPACITY AVAILABLE

PCB ARTwork DESIGN SERVICE
with
and
and
assempent
notation
masters

The AIRAMCO Mikro 1000

-The Scottish Solution.

The Mikro 1000 is a Scottish built micro-computer which combines State of Art technology with simplicity and durability to give a powerful small business system at a very competitive price
 do Mikro 1000 is designed to provide the ease of expansion necessary in a modern growing business or industry - memory is expandable
from 32 K to 256 K , with up to 4 Megabytes of on-lin disk storage.
The integral VDU has an 80 cols. $x 24$ lines screen, and incorporates a green phosphor CRT, while the 117 key machine, and may be programmed for user functions such as word processing commands. As well as sup . As well as supporting all CP/M based languages, the Mikro 1000 has a full range of business software, including Sales,
Purchase and Nominal Ledger, Inventory Control lower cost as a separate system on the Mikro 1000 WP)

For further information on either Mikro 1000 system, please contact:
Unit A2, Longford Avenue, Kilwinning Ind. Est., Kilwinning, Ayrshire, KA22 8NP.
Tel: $029457755 \quad$ Telex: 779808

Registered in England 1179820
267 \& 270 ACTON LANE, LONDON, W4 5DG
Telephone: 01-747 1555/01-994 6275

RESISTORS

Over 2 million metal oxides in stock

 $1 / 4,1 / 2,1$ and 2 w .Full range of Carbon $1 / 4 / 1 / 3 \mathrm{w}$. held. Good selection of wire wounds 2 200w.
mease phone with your require-
CONVERGENCE POTS
Most popular TV values stocked in depth.

DISC CERAMICS

Over 2 million now in stock, mostly ITT type. Large quantity of high
voltage discs, e.g. $210 \mathrm{p} 8 \mathrm{kv}, 220 \mathrm{p}$ $1 \mathrm{kv}, 1 \mathrm{n} 1 \mathrm{kv}, 1 \mathrm{n} 53 \mathrm{kv}, 2 \mathrm{n} 22 \mathrm{kv}$, $4 \mathrm{n} 71.5 \mathrm{kv}, 10 \mathrm{n} 2 \mathrm{kv}$.
Please send for our Disc Ceramic
Stock List

CINCH BARRIER STRIP

w, 8w, 9w, 10w, 18w in quantity
SCOOP PURCHASE OF
PET 100 SERIES
traight plug, right-angled plug. Straight plug, right-angled plug,
chassis socket. Enables us to offer these tiems in quantity at a fraction of manufacturer's price.

SLIDER POTS

220k R. Log Dy Egen
220k R. Log
470 K Lin
1 M Lin
1M Lin
$2 M 2 \cdot R \log$.
Above values only
$6^{\prime}, 19^{\prime \prime}, 1$ MFOFF Racks $£ 30$ ea
Hence only a few left.

LARGE PANEL METERS
$140-0-140 \mathrm{~mA}(107 \times 145 \mathrm{~mm})$ $1 \mathrm{~mA}(115 \times 195 \mathrm{~mm})$. . $£ 5.00$

PRESETS
Full range of PT10, PT15 held. Particularly large quantities of the fol100R(H), All PTIs.

KEYSWITCHES (HEAVY

DUTY)

ROTARY POTS

by Egen
Large quantities of the following values: $2 \mathrm{k} 2 \operatorname{lin}, 22 \mathrm{k} \log +\mathrm{sw}, 100 \mathrm{k}$ in + push sw.
Full range also held TEXAS 4030 JLD Ram. Ex-New Equipment 12v 130 mA Trunsformer 65p ea

ELECTROLYTICS

> Very large quantity of ITT EN121 and EN 1235 series now in stock Please send for our Electrolytic List.

LICON SWITCHES (Illuminated)

01-800 Series, Rectangular snap in 2PCO latching
2PCO Momentary
5PCO $£ 1.50$
$£ 1.50$
 Indicator only
Lenses available in white and red. Lenses available in white and red.
Bulbs to suit $6 \mathrm{v}, 12 \mathrm{v}, 28 \mathrm{v}, 48 \mathrm{v}$
BWC Plugs (by Suhner) 75R. 22p ea quantity available.

ELECTROLYTICS:					
20 mF 400 v	25p	200 mF 400 v	80p	600 mF 300 v	60p
47 mF 500 v .	40p	400 mF 350 v	60p	20,000mF 45v	40p
$32+32 / 450 v$	45p	$500+150-100 v$	40p		40p

We have good stocks of computer grade Electrolytics, too many values to mention here. Please phone for details. The above is a fraction of our stock holding. We also stock a full range of semiconductors, connectors, aluminium boxes, wire and cables, switches, Vero products, etc. For further details phone, send for our retail price list, or visit our shop.

IMPORTANT NOTICE:

Due to the fluctuation in the price of materials used in the items offered above, the company reserve the ight to aiter pires where necessary. If unsure please telephone the above number and our staff will answer your query

Secondhand Terminals Stock Clearance ITEL Model 1051
 IBM SELECTRIC (Golfball) typewriter with optical tape reader and tape punch in

 compact desk-top unit with RS232 serial interface. EBCDIC coded. Reduced from interface. EBCDIC coded. Reduced from $£ 375$ to $£ 295$. Also available a limited number only of machines untested, except for typewriter operation, at $£ 195$.

INDEX TO ADVERTISERS DECEMBER
Appointments Vacant Advertisements appear on pages 131-142

[^1]

Minnong

The biggest name in solder worldwide

Bib Hi-Fi Accessories Ltd., (Solder Division), Kelsey House, Wood Lane End, Hemel Hempstead, Hertfordshire HP24RQ. Telephone: (0442) 61291.

Toolbox Reels.
Multicore 5-core solder for general use. Suitablefor electrical joints (B.S. 219 Grade C)
$40 / 60 \mathrm{tin} /$ lead. 1.6 mm dia. Size 3. $£ 3.91$ per reel. Savbit
Multicore 5-core solder for radio, T.V. and similar work. Reduces copper erosion. Suitablefor service engineers and manufacturers using small quantities of solder 1.2 mm dia. Size $12 . £ 3.91$ per reel.

Multicore Wick.
Multicore solder-wick for removing solder from
virtually any joint.
1.7 mm dia. Size $\mathrm{AB} 10 . £ 1.38$ per reel.

Products that help you make a better job of it.

Tip Kleen

Multicore Tip Kleen. Soldering-irontip wiping pad. Replaceswetsponges. (Should notbeusedabove $350^{\circ} \mathrm{C}$ 81p per pack.

SolderingFlux Pastes
Multicore soldering flux paste. Extra fast. non corrosive, rosin-flux for electrical and general purpose soldering.
Rosin R.F. 10.35 g net. 69 p per pack.
Multicore soldering flux paste for soft metals (except aluminium) and stainless steel. Non-electrical. Arax A.F.14. 35g.69p per pack.

Econopak.
Ersin Multicore 5-core solder. Contains non-corrosive flux for electrical applic̣ations. 1.2 mm dia. 200 g Econopak. Size 13A. £4.14 per reel.

Metal Soldering.
Arax Multicore 4-acid-coresolder for metal fabrication not aluminium) and repairs.
$40 / 60$ tin/lead. 1.6 mm dia. Size $11 . £ 3.91$ per reel.

Wire Stripper and cutter.
Wire stripper and cutter with precision ground and hardened steel jaws. Adjustable to most wire sizes. With handle locking-catch and easy-grip plastic covered handles. Ref: $9 . £ 2.69$ per pair.

All recommended retail prices shown are inclusive of VAT. If you have difficulty in obtaining any of these products send direct with 40p for postage and packing. For free colour brochure send S.A.E.

[^0]: Fig. 2. Read data from memory or peripherals - M6800

[^1]:

